
EUROPEAN JOURNAL OF NATURAL HISTORY № 5, 2024

10 Technical sciences

ARTICLE

UDC 004.4

MODERN METHODS OF AUTOMATED SOFTWARE
SECURITY ANALYSIS: FROM STATIC ANALYSIS

TO COMPREHENSIVE APPROACH
Volkova A.A.

National Research University of Electronic Technology, Moscow,
e-mail: alna_volkova_02@inbox.ru

The article presents a comprehensive analysis of modern methods for automated software security analysis.
The main approaches to vulnerability detection are considered, including static and dynamic code analysis, as well
as hybrid methods using machine learning. Current problems and limitations of existing tools are analyzed, and
promising directions for the development of automated security testing technologies are proposed. The study covers
a wide range of issues, including the effectiveness of various analysis methods, problems of integrating tools into
the development process, and the possibilities of using artificial intelligence to improve the accuracy of vulnerability
detection. Special attention is paid to the problem of reducing false positives and prioritizing identified vulnerabili-
ties. Based on the analysis, recommendations are formulated for improving existing approaches and developing new
methods for automated software security analysis. The research highlights the critical importance of developing
comprehensive approaches that combine different analysis methods and leverage modern machine learning tech-
nologies to enhance the effectiveness of vulnerability detection. The results show that no single method can provide
full coverage of all types of vulnerabilities, necessitating the use of a hybrid approach integrating static and dynamic
analysis with advanced AI techniques. The article also addresses issues of standardizing vulnerability descriptions,
challenges in creating high-quality datasets for training machine learning models, and prospects for developing se-
curity analysis tools in the context of modern software development methodologies such as DevOps and continuous
integration. The study emphasizes the need for ongoing research and development in this field to keep pace with
evolving security threats and increasingly complex software systems. It also discusses the importance of balancing
automation with human expertise in the security analysis process and the potential for AI-driven tools to augment
rather than replace human security analysts.

Keywords: static analysis, dynamic analysis, software vulnerabilities, automated testing, software security, machine
learning, security testing

Introduction
In the modern world, software plays a criti-

cal role in virtually all spheres of life – from
household devices to industrial control sys-
tems, making security issues particularly rel-
evant. The growing complexity of software
systems and a significant increase in source
code volumes, reaching millions of lines, make
complete manual vulnerability testing practi-
cally impossible. In this regard, automated se-
curity analysis tools are becoming a necessary
element of the software development process,
allowing potential problems to be identified at
early stages [1-3].

Existing solutions for automated secu-
rity analysis include various approaches and
methods that work at different stages of the
software lifecycle. Static code analysis allows
finding vulnerabilities without executing it, dy-
namic analysis checks security during program
execution, and hybrid methods combine both
approaches. However, their effective applica-
tion faces a number of significant limitations,
including a high level of false positives, reach-
ing 30-50% of the total number of problems
found, the complexity of configuration and in-

tegration into the development process, as well
as insufficient coverage of various types of vul-
nerabilities [4].

An important problem is also the standard-
ization of vulnerability descriptions – different
tools use their own classifications and termi-
nology, which makes it difficult to compare
them and integrate analysis results. Existing in-
itiatives such as Common Weakness Enumera-
tion (CWE) and Common Vulnerabilities and
Exposures (CVE) aim to create a unified clas-
sification system, but the process of mapping
rules from different tools to these standards of-
ten leads to inconsistencies and gaps [5].

Special attention should be paid to the
problem of “false negative” results, when exist-
ing vulnerabilities are not detected by analysis
tools. Unlike false positives, it is much more
difficult to assess the scale of this problem due
to its very nature. At the same time, missed
critical vulnerabilities can pose a serious threat
to software security.

A promising direction for the development
of security analysis tools is the application of
machine learning methods, which allow in-
creasing the accuracy of vulnerability detec-
tion and reducing the number of false positives.

EUROPEAN JOURNAL OF NATURAL HISTORY № 5, 2024

11Technical sciences

However, the effective use of such approaches
requires high-quality datasets containing ex-
amples of real vulnerabilities and their exploi-
tation. Creating and maintaining the relevance
of such datasets presents a separate challeng-
ing task.

Comprehensive analysis
of the effectiveness of methods and tools
for automated software security testing
As part of this study, a comprehensive anal-

ysis of existing methods and tools for automat-
ed software security analysis was conducted.
The research was based on a systematic review
of scientific literature, analysis of practical
experience in applying various tools, as well
as an assessment of promising directions for
technology development in this area. To form
a representative sample, more than 160 thou-
sand vulnerability records from the Common
Vulnerabilities and Exposures (CVE) database
were analyzed, covering both proprietary and
open-source projects.

The methodology included several interre-
lated stages. At the first stage, an analysis of ex-
isting approaches to vulnerability classification
was conducted, including Common Weakness
Enumeration (CWE) and specialized catalogs
of major vendors. Significant discrepancies in
terminology and classification between differ-
ent systems were identified, which creates dif-
ficulties in integrating analysis tools [6, 7].

At the second stage, the features of applying
static and dynamic code analysis were investi-
gated. It was found that static analyzers, despite
a high percentage of false positives (up to 30-
50%), allow identifying potential vulnerabili-
ties at early stages of development. Dynamic
analysis demonstrates higher accuracy but re-
quires the creation of special test scenarios.

Special attention was paid to studying the
following key aspects:

• The effectiveness of various approaches
to vulnerability detection, including code cov-
erage analysis, detection accuracy, and false
positive rate.

• Problems of integrating analysis tools into
the development process, in particular issues of
configuration, performance, and usability.

• Possibilities of applying machine learn-
ing to improve analysis accuracy, including the
use of large datasets of known vulnerabilities.

• Methods for reducing the number of false
positives by improving contextual analysis and
prioritizing results.

• Approaches to prioritizing identified vul-
nerabilities based on criticality assessment and
probability of exploitation.

The study also included an analysis of
practical experience in using security tools
in real projects. The main reasons for re-
fusing to use analysis tools were identified,
including configuration complexity, high
cost, insufficient integration with develop-
ment processes, and low quality of prob-
lem descriptions.

To improve the effectiveness of security
analysis tools, it is necessary to:

• Improve integration with modern devel-
opment environments.

• Provide more accurate prioritization of
identified vulnerabilities.

• Provide more detailed problem descrip-
tions and recommendations for their elimi-
nation.

• Reduce the number of false positives by
improving contextual analysis.

• Expand support for various programming
languages and technologies.

Additionally, issues of standardizing vul-
nerability descriptions and problems of map-
ping different classifications were considered.
The analysis showed that existing initiatives
such as Common Weakness Enumeration
(CWE) and Common Vulnerabilities and
Exposures (CVE), while providing a basic
structure for classification, do not always al-
low accurate description of complex attack
scenarios and relationships between various
vulnerabilities [8].

Special attention was paid to the problem
of “false negative” results, when existing vul-
nerabilities are not detected by analysis tools.
Unlike false positives, it is much more difficult
to assess the scale of this problem. Potential
approaches to assessing and reducing the num-
ber of missed vulnerabilities were considered,
including the application of machine learn-
ing methods and combining different types
of analysis.

The study also touched upon issues of cre-
ating and maintaining up-to-date datasets for
training machine learning models in security
analysis tasks. Existing open vulnerability da-
tabases and their limitations were analyzed,
and approaches to creating synthetic datasets
for testing analysis tools were considered.

As a result of the analysis, recommenda-
tions were formulated for improving meth-
ods and tools for automated software security
analysis, including the need to develop more
flexible formats for describing analysis results,
improving integration with modern develop-
ment processes, and applying machine learn-
ing methods to increase the accuracy of vulner-
ability detection.

EUROPEAN JOURNAL OF NATURAL HISTORY № 5, 2024

12 Technical sciences

Comparative analysis of modern
automated vulnerability search tools
and prospects for their development

using machine learning methods
The analysis showed that existing automat-

ed security analysis tools can be divided into
several main categories:

1. Static code analysis tools that work
without executing it, including syntactic ana-
lyzers, semantic data flow analyzers, and mod-
el checking tools. These solutions allow find-
ing potential vulnerabilities at early stages but
have limitations in the form of a large number
of false positives.

2. Dynamic analysis tools that check secu-
rity during program execution by monitoring
application behavior, tracking data flows, and
identifying anomalous behavior. Such tools
provide higher accuracy but require careful
preparation of test scenarios.

3. Hybrid solutions combining various
analysis approaches, including static and dy-
namic analysis, as well as machine learning
methods. Such tools allow compensating for
the shortcomings of individual approaches
and increasing the effectiveness of vulnerabil-
ity detection.

4. Specialized tools for analyzing specific
types of vulnerabilities, such as SQL injections,
cross-site scripting (XSS), or buffer overflow.
Such solutions provide in-depth analysis of
certain vulnerability classes.

However, each approach has its advantages
and limitations. Static analysis is effective for
early detection of potential security problems
but often generates a significant number of
false positives, which complicates practical ap-
plication. According to research, up to 50% of
static analyzer warnings can be false. Dynamic
analysis provides higher accuracy by checking
the actual behavior of the program but requires
creating special test scenarios and cannot de-
tect all potential problems due to limited code
coverage [9].

The study showed that a promising direc-
tion is the application of machine learning
methods to improve analysis accuracy and re-
duce the number of false positives. The use of
neural networks and other machine learning
algorithms allows considering the context of
software use, identifying complex vulnerabil-
ity patterns, and adapting analysis to specific
requirements. For example, applying deep
learning methods for source code analysis
can reduce the number of false positives by
30-40% compared to traditional approaches
[10, 11].

An important aspect is also the integration
of security analysis tools into the software de-
velopment process. Research shows that the
effectiveness of tool application significantly
depends on how conveniently they fit into ex-
isting development processes and tools. It is
necessary to ensure support for popular devel-
opment environments, version control systems,
and continuous integration tools.

Special attention should be paid to the prob-
lem of prioritizing identified vulnerabilities.
With limited resources, it is critical to correctly
determine the sequence of addressing detected
security problems. A promising approach is the
application of risk-oriented analysis, consider-
ing both the probability of vulnerability exploi-
tation and the potential damage from its use.

Additionally, the following aspects of de-
veloping automated security analysis tools
were considered:

• Application of natural language process-
ing methods for analyzing comments in code,
documentation, and other textual artifacts of
the project to identify potential vulnerabilities.

• Use of graph neural networks to analyze
code structure and identify complex dependen-
cies between various programs components.

• Development of interpretable machine
learning methods to ensure transparency and
explainability of analysis results.

• Creation of specialized language models
pre-trained on large volumes of source code
to improve analysis accuracy in specific sub-
ject areas.

• Application of active learning methods to
adapt machine learning models to the specifics
of projects and reduce the need for large vol-
umes of labeled data.

• Development of analysis methods that
consider the features of modern software ar-
chitectures, including microservices and dis-
tributed systems.

The study also touched upon issues of eval-
uating the effectiveness of security analysis
tools. Various metrics used to compare tools
were considered, including accuracy, com-
pleteness, F1-measure, and analysis time. The
need to develop more comprehensive evalua-
tion methods that consider not only technical
aspects but also usability, integration with de-
velopment processes, and economic efficiency
was noted.

Conclusion
The conducted study confirms the critical

importance of developing methods for auto-
mated software security analysis. The results
show that the most promising approach is a

EUROPEAN JOURNAL OF NATURAL HISTORY № 5, 2024

13Technical sciences

comprehensive one, combining various analy-
sis methods and using modern machine learn-
ing technologies to improve the effectiveness
of vulnerability detection. Analysis of exist-
ing tools revealed that no single method can
provide complete coverage of all types of vul-
nerabilities, making it necessary to apply a hy-
brid approach.

Static code analysis, despite a high level
of false positives, remains an important com-
ponent of the security testing process, allow-
ing potential problems to be identified at early
stages of development. Dynamic analysis, in
turn, provides more accurate results by ana-
lyzing the actual behavior of the program, but
requires significant resources to create test sce-
narios. Integration of machine learning meth-
ods can significantly improve analysis accura-
cy by considering the context of software use
and adapting to specific project requirements.

Further research in this area should be
directed towards developing more advanced
methods of integrating analysis tools into the
development process. It is critically important
to reduce the number of false positives, which
significantly reduce developers’ trust in the re-
sults of automated analysis. It is also necessary
to pay attention to the problem of false negative
results, which can miss critical vulnerabilities.

Special attention should be paid to devel-
oping methods for prioritizing identified vul-
nerabilities and automating the process of their
elimination. Existing approaches to vulnerabil-
ity ranking are often based on simplified criti-
cality assessment models that do not consider
the specifics of projects. It is necessary to de-
velop more advanced risk assessment methods
that consider both technical aspects of vulnera-
bilities and features of business processes.

Integration of security analysis tools into
modern DevOps processes presents a separate
important task. It is necessary to ensure con-
tinuous security analysis at all stages of the
software lifecycle without creating significant
delays in the development process. A promis-
ing direction is the development of intelligent
systems capable of automatically determining
the optimal set of security checks depending on
the context of code changes.

Standardization and unification of security
analysis results presentation also requires fur-
ther development. Existing standards such as

CWE and CVE provide a basic classification
of vulnerabilities, but do not always allow ac-
curate description of complex attack scenarios
and relationships between various vulnerabil-
ities. It is necessary to develop more flexible
formats for describing analysis results, ensur-
ing effective communication between various
participants in the development process.

References
1. Terentyeva Yu.Yu. Modeling of communication systems

in terms of ensuring its stability // Devices and systems. Manage-
ment, control, diagnostics. 2024. Is. 2. Р. 64-70. DOI: 10.25791/
pribor.2.2024.1479.

2. Birikh E.V., Gruzdev A.S., Kamalova A.O., Sakharov D.V.
The choice of tools for dynamic security analysis of web appli-
cations for the tasks of the digital economy // Information protec-
tion. Insider. 2024. Is. 1(115). Р. 42-46.

3. Lapina M.A., Aganesov A.S., Koronsky A.A., Khoda-
kov M.I. Comparative characteristics of software code analyzers
// Student science for the development of information society:
Materials of the XU All-Russian Scientific and Technical Con-
ference with the invitation of foreign scientists, Stavropol, No-
vember 28, 2023. Stavropol: North Caucasus Federal University,
2024 Р. 425-431.

4. Bukarev A.V. Effective method of automated software
testing of consumer electronics devices using cloud devices //
Engineering Bulletin of the Don. 2023. Is. 9(105). Р. 212-219.

5. Bukarev A.V. Analysis of statistical characteristics of the
process of automated testing of mobile applications using auto-
mated process control systems // Prospects of science. 2023. Is.
2(161). Р. 39-42.

6. Gimatdinov D.M., Gerasimov A.Y., Privalov P.A. et al.
An Automated Framework for Testing Source Code Static Anal-
ysis Tools // Proceedings of the Institute for System Program-
ming of the RAS. 2021. Vol. 33, Is. 3. P. 41-50. DOI: 10.15514/
ISPRAS-2021-33(3)-3.

7. Motorin S.V., Kalyakina D.P., Motorin A.S. Analysis of
the impact of test automation on the example of the coronapay
mobile application // Research Forum – 2024: collection of ar-
ticles of the International Scientific and Practical Conference,
Petrozavodsk, January 09, 2024. Petrozavodsk: International
Center for Scientific Partnership “New Science” “ (IP Iva-
novskaya I.I.), 2024. Р.165-173.

8. Sobolevsky V.A. Using AUTOML technologies to solve
monitoring problems // Informatization and Communications.
2024. Is. 1. Р. 90-97. DOI: 10.34219/2078-8320-2024-15-90-97.

9. Maksimova E.A., Danilin E.D. Software development of
the information and analytical module of the process monitor-
ing system at the user’s automated workplace // Student science
for the development of the information society: Materials of the
XU All-Russian Scientific and Technical Conference with the
invitation of foreign scientists (Stavropol, November 28, 2023).
Stavropol: North Caucasus Federal University, 2024. Р. 187-194.

10. Gulyaev D.A., Gulyaeva A.V. Software security: chal-
lenges and innovations // Planning, conducting and interpreting
the results of scientific research: Collection of articles of the In-
ternational Scientific and Practical Conference (Kirov, January
20, 2024). Ufa: Aeterna LLC, 2024. Р. 43-45.

11. Dvoryak D.A. The influence of the choice of a software
platform on the security of web applications // Young Scientist.
2024. Is. 7(506). Р. 7-10.

