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Volcanic ash is a serious problem for aviation safety. The Northern Pacific region is considered to be one of 
the most dangerous in terms of volcanic activity but the airspace is one of the busiest over that region, thus moni-
toring and detection of volcanic activity, ash clouds and plumes are matter of international economy and safety of 
transpacific and regional flights. The article is dedicated to the volcanic plume analysis using Principal Component 
Analysis (PCA), which is a technique for dimension reduction and, in terms of remote sensing, evaluating most in-
formative bands. Results, obtained with PCA then were compared with Seviri-Ash RGB model by Eumetsat. Three 
channels were denoted as principal components, carrying the most valuable information on these individual plumes. 
For additional information, advisory messages and ash cloud charts from Volcanic Ash Advisory Centres (VAACs), 
Sakhalin and Kamchatkan Volcanic Eruption Response Team (SVERT & KVERT respectively) were taken. This 
article is based on several eruptions occurred in 2018-2020 in Kuril and Kamchatka area and reveals commonalities 
in several chosen cases of volcanic plume eruptions of various magnitudes.
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Volcanic eruptions in Russian Far East 
mostly occur on Kamchatka Peninsula and 
The Kuril Islands, which are the part of The 
Ring of Fire – a chain of volcanoes around the 
Pacific Ocean. At the same time, ones of the 
most important international airways lie over 
that region, such as transpacific routes from 
Southeast Asia to America and Europe. Beside 
them there are plenty of regional airways. So, 
the vast part of the international economy de-
pends on the right forecasting, adequate and 
punctually actions for preventing aircrafts’ get-
ting into the unfavourable conditions. The im-
portance and convenience of satellite sensing 
is undoubtable in such fields of studies as vol-
canic plume observations where it provides a 
simple way for cloud recognition and tracking.

When getting in volcanic ash cloud, an air-
craft could suffer serious damage. One of the 
major threats for aviation lies in the proper-
ties of the ash particles which are ≤ 2 mm in 
diameter, consisting mostly of siliceous and 
vitreous materials. Melting temperature of 
ash components coincide with operating tem-
perature in most jet engines, which is around 
1200-1400°C while morphological metamor-
phosis starts at 670-800°C. This leads to melt-
ing and accumulation of volcanic material on 
the engine blades, compressor and other inner 
parts, and, in turn, to engine failure. Damage is 
dealt not only to engines, but also to Pitot tubes 
which could not indicate airspeed correctly be-
ing blocked by the ash; cockpit and cabin win-
dows, making them blind; wings and fuselage 
surfaces, as these particles act like an abrasive 
material. Besides the ash particles, sulphur di-
oxide, chlorine and other corrosive gases could 

be contained in the plume. The plume could 
also remain in the atmosphere for quite a long 
time and transported over thousands of kilome-
tres, thus it is important not only to monitor the 
process of eruption itself and in the vicinity of 
volcano, but also to trace plume throughout its 
persistence period. Along with the significant 
residence time, another problem caused by ash 
presence in the troposphere is the acid rains. 
Another harmful phenomenon, associated 
with eruptions is the ashfall. This is a fallout 
of ash particles, in a relatively short time after 
eruption. The ashfall reduces visibility, blocks 
sunlight, worsens total grip on airport runways 
and roads, could act like a corrosive and abra-
sive material and cause electrical short circuits. 
As the ash material is quite dense, it may also 
cause roofs’ collapses. Although it is not highly 
toxic, it may cause breathing obstructions.

Globally, the problem of avoiding ash clouds 
emerged in 1980s with the broad development 
of high-level flights and concerns heightened 
in 2010 when the eruption of Eyjafjallajökull 
volcano in Iceland impacted the air transport 
all over Europe and North Atlantic. This event 
led to great economic losses. The International 
Civil Aviation Organization (ICAO) is constant-
ly developing and improving its manuals on the 
aviation safety concerning the hazards of vol-
canic activity. To maintain desirable smoothness 
and promptness of the implementation, volcanic 
ash exercises (VOLCEX) are held regularly, 
with frequency determined by the ICAO. Flight 
documentation nowadays includes reports on 
latest occurred events in form of SIGMET, 
NOTAM and VONA messages and is included 
in METLINK information system.
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Ways of plumes detecting and satellite im-
aging processing, comparison of two detecting 
methods are presented in this article.

Purpose of the research
This study is dedicated to similarities eval-

uation in volcanic plumes’ properties in certain 
region with implementation of remote sensing 
techniques. Another point is to compare PCA 
results with Ash-RGB model by Eumetsat  – 
European Organization for the Exploration of 
Meteorological Satellites for various condi-
tions of research.

Sources and methods of the research
Advisory information on volcanic ash is 

provided by Kamchatka Volcanic Eruption Re-
sponse Team [1].

Source of MODIS products is The Lev-
el-1 and Atmosphere Archive & Distribution 
System (LAADS) Distributed Active Archive 
Centre (DAAC) [2].

Eumetsat Ash-RGB model was originally 
developed to be used with SEVIRI (Spin-
ning Enhanced Visible and Infrared Imager) 
data [3], but in course of further researches it 
showed accurate results while being applied 
to MODIS data. It is mostly aimed to detect 
SO2 clouds within volcanic plume. The ba-
sics of the method are following: brightness 
temperature difference between infrared (IR) 
channels 12.0-10.8 μm depicts thin volcanic 
ash, difference between IR 10.8-8.7 μm depicts 
SO2 gas plume due to its absorption at 8.7 μm, 
IR 10.8 μm band is for cold clouds detection.

These channels are widely-used in various 
ash detection techniques beside mentioned in 
the article, such as, for example, reverse ab-
sorption technique.

However, there are some limitations of this 
method. Thick ash clouds could not be dis-
criminated from ice clouds, low-level plumes 
could be covered by high-level clouds, pres-
ence of ash and SO2 in cirrus clouds might be 
problematic. Colours of the visible structures 
may vary due to dependence on viewing an-
gle, concentration, cloud transparency, water 
vapour content and temperature.

The PCA is applied with multispectral im-
ages. The input images have to share the same 
dimensions (rows and columns), pre-process-
ing level, number of bands, format and for 
preference the same incidence angle. The aim 
of using PCA is dimensionality reduction of 
the data to maximize the amount of informa-
tion from the original bands into the least num-
ber of PC, in this case, the number of original 
bands. A set of correlated variables (original 

bands) is transformed in other uncorrelated 
variables (PC) which contain the maximum 
original information with a physical meaning 
that needs to be explored. Assuming a multi-
spectral image with N input bands it can be ex-
pressed in matrix format in the following way:
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where n represents the number of pixels and 
b the number of bands. Considering each 
band as a vector, the matrix can be simplified 
as follows:
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where k is the number of bands. To reduce the 
dimensionality of the original bands the eigen-
values of the covariance matrix must be calcu-
lated as follows:
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where σij is the covariance of each pair of dif-
ferent bands.

	 ( )( )( ), ,
1

1  4
1

N

ij p i i p j j
p

DN DN
N

σ m m
=

= − −
− ∑ 	(4)

where DNp,i is the digital number of the pixel p 
in the  band i; DNp,j is the digital number of the 
pixel p in the band j; μi and μj are the averages 
of the DN for the bands i and j, respectively. 
From the variance–covariance matrix, the ei-
genvalues (λ) are calculated as the roots of the 
characteristic equation:

	 ( ) ( )det 0 5C Iλ− = 	  (5)
where C is the covariance matrix of the bands 
and I is the diagonal identity matrix. The eigen-
values indicate the original information that is 
retained. From these values the percentage of 
original variance explained by each PC can be 
obtained calculating the ratio of each eigenval-
ue in relation to the sum of all them. The PC 
can be expressed in matrix from:

	 ( )
1 1,1 1, 1

,1 ,

 6
b

b

b b b b b

y w w x
Y

y w w x

    
    = =     

        



    



	 (6)



EUROPEAN JOURNAL OF NATURAL HISTORY № 1, 2022

6 Geographic sciences

where Y is the vector of the principal compo-
nents, w the transformation matrix, and x the 
vector of the original data. The coefficients of 
the transformation matrix w are the eigenvec-
tors that diagonalized the covariance matrix of 
the original bands. These values provide infor-
mation on the relationship of these bands with 
each PC (Figure 1). From these values it is pos-
sible to link a main PC with a real variable. The 
eigenvectors can be calculated from the vec-
tor–matrix equation for each eigenvalue λk.

	 ( ) ( )0 7k kC I Wλ− =  	 (7)
where C is the covariance matrix, lk is the k 
eigenvalues (eight in a SPOT multitemporal 
composition), I is the diagonal identity matrix, 
and Wk is the k eigenvectors [4,5,6].

Mathematically, having spatially distrib-
uted values, 1st principal component (PC) lies 
along the general values’ variation vector, then 
if the noise is still unacceptable, 2nd principal 
component is introduced perpendicular to the 
first one, describing variations along this vec-
tor, and so on. So, the first principal component 
(PC1) contains more information, the second 
one describes the dispersion of the data which 
was not taken into account due to orthogonality 
of the PC with lower order. Consequent ones 
contain less and less information and noise. If 
two values are somehow correlated, the distri-
bution would have an ellipsoidal shape. The 
aim of the PCA is to define direction of the el-
lipse’s major axis – PC1. Obviously, PC2 is the 
ellipse’s minor axis. Number of principal com-
ponents equals the dimensionality of a space 
and every consequent principal component is 

orthogonal to previous one. Also, analysing the 
last PCs could reveal such fine details that were 
shaded by high contrast in initial image, after 
the elimination of higher-order PCs’ influence. 
Thus, as high-order PCs contain noise mostly, 
the reverse implementation of valuable princi-
pal components provides noise reduction.

The PCA is designed for highly-correlat-
ing data processing, which is spectrally close 
MODIS bands.

Results of the research and discussions
10 cases of volcanic eruptions occurred 

in Kuril and Kamchatka region during 2018-
2020 period had been studied in course of this 
research. One of them is presented in this pa-
per, illustrating various ways of used methods 
application. Images were processed with Ash-
RGB method by Eumetsat and by principal 
component analysis. Input thermal infrared 
images, difference images used for Ash-RGB 
model and principal component images are 
shown in fig. 2. The term of principal compo-
nent image (PCI) was introduced by Hillger in 
1996 (Meteorological analysis using principal 
component image transformation of GOES im-
agery, International Radiation Symposium-96, 
Fairbanks, AK) [7].

Fig. 3 depicts scatter plots for initial 
MODIS bands 29 and 31; 29 and 32; 31 and 
32 (a-c); 32-31 difference and 31-29 difference; 
31-29 difference and 31; 32-31 difference and 
31 (d-f); PC1-PC2; PC1-PC3; PC3-PC2 (g-i).

Following table (table 1) shows the contri-
bution each of three components makes in total 
dispersion, correlation and covariation matrices.

 

Fig. 1. Graphic representation of PCA rotation [4]



EUROPEAN JOURNAL OF NATURAL HISTORY № 1, 2022

7Geographic sciences
 

a) b) c)

d) e)

f) g) h)

 Fig. 2. Thermal IR and difference images, used for Ash-RGB image composition:  
a) 8.6 μm, b) 11 μm, c) 12 μm, d) 12-11 μm difference;  
e) 11-8.6 μm difference; f) PCI-1; g)PCI-2; h) PCI-3

Table 1 
The contribution of each of the three components to the overall variance,  

correlation and covariance matrices

Var/Covar 1 2 3
1 2084.00 1912.30 1943.68
2 1912.30 1907.05 1963.63
3 1943.68 1963.63 2034.29

Cor Matrix 1 2 3
1 1.000000 0.959236 0.943997
2 0.959236 1.000000 0.996948
3 0.943997 0.996948 1.000000

Component C1 C2 C3
% var 97.74 2.20 0.06

Eigenval. 5888.99 132.74 3.61
Eigvec.1 0.583014 -0.804890 0.110669
Eigvec.2 0.563205 0.302208 -0.769071
Eigvec.3 0.585572 0.510709 0.629509
Loading C1 C2 C3

1 0.980055 -0.203137 0.004604
2 0.989706 0.079731 -0.033446
3 0.996310 0.130458 0.026507
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d) e) f)

g) h) i)

 Fig. 3. Scatter plots for: a) 8.6 and 11 μm; b) 8.6 and 12 μm; c) 11 and 12 μm; d) (12-11) and (11-8.6) μm; 
e) (11-8.6) and 11 μm; f) (12-11) and 11 μm; g) PC1 and PC2; h) PC1 and PC3; i) PC3 and PC2

Table 2
Colour interpretation of RGB images

Ash-RGB PCA Relates to:
■ Thin volcanic ash

Thick volcanic ash
SO2 gas plume

Mixed ash and SO2 gas
Water clouds

Ice clouds

It is clear that the first principal component 
describes 97.74% of variance on the scene.

As could be seen from fig. 3, the initial 
channels themselves don’t fully describe the 
desirable variances. Band differences used in 
SEVIRI Ash-RGB technique are aligned along 
the axis, but principal components (fig. 3, g-i) 
are more informative as they are stretched 
along the variation axis in 3 ways. This shows 
data distribution with high dynamic range 
along the maximum dispersion axis clearly.

Combining PCIs in RGB-image led to fol-
lowing results (fig. 4). Colour interpretation of 
RGB images is given in Table 2.

These are nighttime images. As seen, ei-
ther SEVIRI Ash-RGB model or PCA pro-
vides clear view on location of volcanic 
plume. Here, area contaminated with thin ash 
plume and SO2 mixture (shades of yellow in 
fig. 3, a) differentiates from ash cloud (shades 
of red/orange). In the PCI-combined RGB 
image this difference is also notable: purple 
colours for SO2, ash and SO2 mixture is in 
russet colour, ash plume is in shades of lime. 
However, RGB-combined PCIs shows more 
levels of SO2 and ash concentration and the 
ash cloud could not be misinterpreted as an 
ice cloud.
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a) b)

 
Fig. 4. a) SEVIRI Ash-RGB image; b) PCI-combined image – for mixed ash SO2 plume

Based on surveyed example, SEVIRI Ash-
RGB technique showed more accurate results 
in distribution of SO2 components mostly. Prin-
cipal component analysis is used for extraction 
of most informative channels out of the whole 
MODIS band range and 3 bands were found to 
be most informative.

Conclusions
It was stated that bands 29 (8.6 μm), 

31 (11 μm) and 32 (12 μm) were tended to 
be more informative for ash clouds detection 
throughout this work. This could have found a 
practical implementation, as it was made in [8], 
where bands 30, 31, 36 were used.

Comparison of PCA and Ash-RGB model 
showed relatively acceptable results and the 
implementation of each of the technique de-
pends on the conditions. SEVIRI Ash-RGB 
describes composition of the plume, points out 
SO2 fractions, while PCA also provides more 
information on concentrations and mixed ash 
and SO2 composition of the plume, describes 
more levels of plume contamination. Moreo-
ver, PCA eliminates uncertainty in case of ice 
clouds surroundings due to more contrast view 
of a plume. Co-use of two methods may pro-
vide the full picture of studied events.
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