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The design and optimization of a complicated systems are the most difficult problems. A complicated 
system consists of a number of subsystems and large set of a design variables or the calculation of one solu-
tion of such system can take very much of computer time. Different departments of the design office engaged 
in creating a intellectual system (machine) optimize their ‘own’ subsystems, while ignoring others. A system 
assembled from ‘autonomously optimal’ subsystems turns out to be far from perfect. A intellectual system 
(machine) is a single whole. When improving one of its subsystems, we can unwittingly worsen others. This 
implies that it is not always possible to solve optimization problems directly even for determination of the 
feasible solution set. The correct determination of the feasible solution set was a major challenge in engineer-
ing optimization problems. In order to construct the feasible solution set, a method called the Parameter Space 
Investigation (PSI) has been created and successfully integrated into various fields of industry, science, and 
technology. The methods of approximation of the feasible solution and Pareto optimal sets and the regulariza-
tion of the Pareto optimal set are described in our paper. These methods are applied for solving the multicriteria 
optimization problems of a complicated systems.
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Main Definitions

Let us consider a system whose opera-
tion is described by a system of equations or 
whose performance criteria may be directly 
calculated. We assume that the system de-
pends on r design variables α1,...,αr represent-
ing a point α = (α1,...,αr) of an r-dimensional 
space. In the general case, when designing 
a system, one has to take into account the 
design variable constraints, the functional 
constraints, and the criteria constraints [1].
These constraints defines D- the feasible so-
lution set.

Definition 1. A point α0∈D, is called the 
Pareto optimal point if there exists no point 
α∈D such that ( ) ( )0Φ α ≤ Φ αν ν  for all all 
n = l,...,k, and ( ) ( )0 0

0Φ α < Φ αν ν  for at least 
one of n. A set P ⊂ D is called the Pareto opti-
mal set if it consists of Pareto optimal points.

When solving the problem, one has to de-
termine a design variable vector point α0∈P, 
which is most preferable among the vectors 
belonging to set P.

The Pareto optimal set plays an impor-
tant role in vector optimization problems be-
cause it can be analyzed more easily than the 
feasible solution set and because the optimal 
vector always belongs to the Pareto optimal 
set, irrespective of the system of preferences 
used by the expert for comparing vectors 
belonging to the feasible solution set. Thus, 
when solving a multicriteria optimization 
problem, one always has to find the set of 
Pareto optimal solutions.

The Feasible and Pareto Optimal  
Sets Approximation

The algorithm discussed in [1] allows sim-
ple and efficient identification and selection of 
feasible points from the design variable space. 
However, the following question arises: How 
can one use the algorithm to construct a feasi-
ble solution set D with a given accuracy? The 
latter is constructed by singling out a subset of 
D that approaches any value of each criterion 
in region Ф(D) with a predetermined accuracy. 

Approximation of Feasible Solution Set
Let εν be an admissible (in the expert’s 

opinion) error in criterion Фν. By ε we denote 
the error set {εν}, n = l,...,k. We will say that 
region Ф(D) is approximated by a finite set 
Ф(De) with an accuracy up to the set ε, if for 
any vector α∈D, there can be found a vector 
β∈De such that 

( ) ( ) , 1,..., .kν ν νΦ α − Φ β ≤ ε ν =

We assume that the functions we will be 
operating with are continuous and satisfy the 
Lipschitz condition (L) formulated as follows: 
For all vectors α and β belonging to the domain 
of definition of the criterion Фn, there exists a 
number Lν such that

( ) ( ) max .j jj
Lν ν νΦ α − Φ β ≤ α − β

In other words, there exists Lν′  such that

1

( ) ( ) .
r

j j
j

Lν ν ν
=

Φ α − Φ β ≤ α − β′∑



EUROPEAN JOURNAL OF NATURAL HISTORY № 5, 2019

71Technical sciences

We will say that a function Фn(α) satis-
fies the special Lipschitz condition (SL) if for 
all vectors α and b there exist numbers jLν , 
j = 1,...,r such that

1

| ( ) ( ) | | |,
r

j
j j

j

Lν ν ν
=

Φ α − Φ β ≤ α − β∑

where at least some of the jL ν  are different. 
Let the Lipschitz constants Lν, be specified, 

and let N1 be the subset of the points D that are 
either the Pareto optimal points or lie within 
the ε-neighborhood of a Pareto optimal point 
with respect to at least one criterion. In other 
words, Фn(α

0) ≤ Фn(α) ≤ Фn(α
0) + en, where 

α0∈P, and P is the Pareto optimal set. Also, let 
N2 = D\N1 and ,ν νε > ε .

Definition 2. A feasible solution set Ф(D) 
is said to be normally approximated if any 
point of set N1 is approximated to within an ac-
curacy of ε, and any point of set N2 to within an 
accuracy of .ε

Theorem 1. Let the criteria are continu-
ous and satisfies the Lipschitz condition or 
the special Lipschitz condition. There exists 
a normal approximation Ф(De) of a feasible 
solution set Ф(D).

Approximation of Pareto Set
Since the Pareto optimal set is unstable, 

even slight errors in calculating criteria Фn(α) 
may lead to a drastic change in the set. This im-
plies that by approximating a feasible solution 
set with a given accuracy we cannot guarantee 
an appropriate approximation of the Pareto op-
timal set. Although the problem has been tack-
led since the 1950s, a complete solution ac-
ceptable for the majority of practical problems 
is still to be obtained. Nevertheless, promising 
methods have been proposed for some classes 
of functions. 

Let P be the Pareto optimal set in the de-
sign variable space; Ф(P) be its image; and ε 

be a set of admissible errors. It is desirable to 
construct a finite Pareto optimal set Ф(Pe) ap-
proximating Ф(P) to within an accuracy of ε.

Let Ф(De) be the ε-approximation of Ф(D), 
and Pe be the Pareto optimal subset in De. As 
has already been mentioned, the complexity of 
constructing a finite approximation of the Pa-
reto optimal set results from the fact that, in 
general, in approximating the feasible solution 
set Ф(D) by a finite set Ф(De) to within an ac-
curacy of ε, one cannot achieve the approxi-
mation of Ф(P) with the same accuracy. Such 
problems are said to be ill-posed in the sense 
of Tikhonov [2]. Although this notion is rou-
tinely used in computational mathematics, let 
us recall it here.

Let P be a functional in the space X, 
P:X→Y. We suppose that there exists y* = inf 
P(x), and Ve(y*) is the neighborhood of the de-
sired solution y*. Let us single out an element 
x* (or a set of elements) in space X and its  
d-neighborhood Vd (x*) and call xε

δ  a solution to 
the problem of finding the extremum of P if the 
solution simultaneously satisfies the conditions 
xε

δ ∈Vd (x*) and P( xε
δ )∈Vε (y*). If at least one 

of the conditions is not satisfied for arbitrary 
values of e and d, then the problem is called 
ill-posed (in the sense of Tikhonov).

An analogous definition may be formulat-
ed for the case when P is an operator mapping 
space X into space Y. Let us set

X = {Ф(De), Ф(D)}; Y = { Ф(Pe), Ф(P)},
where ε→0, and let P : X→Y be an operator 
relating any element of X to its Pareto optimal 
subset. Then in accordance with what was 
said before, the problem of constructing sets 
Ф(De) and Ф(Pe) belonging simultaneously 
to the ε-neighborhoods of Ф(D) and Ф(P), 
respectively, is ill-posed. Of course, in spaces X 
and Y, the metric or topology, that corresponds 
to the system of preferences on Ф(D) must be 
specified [2]. Let us define the Ve-neighborhood 
of a point Ф(α0)∈Ф(П) as 

0{ ( ) ( ) : ( ) ( ) , 1,..., }V kε ν ν ν= Φ α ∈Φ Π Φ α − Φ α ≤ ε ν = .

In Theorem 2, a Pareto optimal set Ф(Pe) 
in which for any point Ф(α0)∈Ф(P) and any 
of its e-neighborhoods Ve there may be found 
a point Ф(b)∈Ф(Pe) belonging to Ve is con-
structed. Conversely, in the e-neighborhood 
of any point Ф(b)∈Ф(Pe), there must exist a 
point Ф(α0)∈Ф(P). The set Ф(Pe) is called an 
approximation possessing property M. Let 
Ф(De), an approximation of Ф(D), have been 
constructed. 

Theorem 2. If the conditions of Theorem 
1 are satisfied, then there exists an approxima-
tion Ф(Pe) of Pareto set Ф(P) possessing the 
M-property.

The theorem will be proved by analyzing 
the neighborhoods of the so-called “suspi-
cious” points from Ф(De), that is, the points 
to whose neighborhoods the true Pareto opti-
mal vectors may belong. If we find new Pa-
reto optimal vectors in the neighborhoods  
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of the “suspicious” points then these vectors 
may be added to Ф(Pe). Taken together with 
Ф(Pe), they form the ε-approximation of a Pa-
reto optimal set, [2].

In [2] it is shown that this approach solves 
the problem of the ill-posedness (in the sense 
of Tikhonov) of the Pareto optimal set ap-
proximation.

Decomposition and Aggregation  
of Сomplicated Systems 

When designing complicated systems, one 
has to deal with complicated mathematical 
models. Very often these models have many 
hundreds of degrees of freedom, are described 
by high-order sets of equations, and, as has al-
ready been mentioned, the calculation of one 
solution can take an hour or more of computer 
time. This implies that it is not always pos-
sible to solve optimization problems directly 
(otherwise we would have no problem with 
large-scale systems). One remedy may be to 
split (decompose) a complicated system into 
subsystems that can be easily optimized, and 
then aggregate the partial optimization results 
to obtain nearly optimal solutions for the whole 
system. This will allow a designer to determine 
the requirements for the subsystems so as to 
make a machine optimal as a whole and, in this 
way, justify the proposals for designing differ-
ent units of the machine.

Construction of Hierarchically  
Consistent Solutions

To solve this problem we can use an approach 
associated with considering the whole system as 
a hierarchical structure .The lower level of this 
structure comprises subsystems, whereas the 
higher level is the system as a whole. In many 
cases, the optimization can be done more simply 
at the lower level. Therefore, by using the results 
of the optimization at the lower level and thus re-
ducing the number of competing solutions for the 
whole system, we can optimize the system in rea-
sonable time. This approach was proposed com-
paratively recently, and only the first steps have 
been made in this direction. In particular, this is 
true for the methods proposed here. Nevertheless, 
the results obtained can be used to optimize many 
large-scale systems.

Since the proposed approach is based on 
the optimization of the whole system through 
the optimization of its subsystems, we briefly 
describe the relation between the criteria for 
the system and subsystems. There are three 
possibilities for this relation:

1. Some of the criteria of the subsystem 
can implicitly affect the performance criteria 

of the system as a whole, and very often, such 
subsystem criteria are absent from the list of 
performance criteria of the whole system.

2. Some of the system criteria cannot be 
calculated at the subsystem level.

3. There are criteria that may be calculated 
for both the whole system and its sub systems.

The three schemes have the following 
common features:

1. It is supposed that some of the mathe-
matical models cannot be effectively optimized 
with respect to the whole criteria vector Ф, be-
cause it takes a great deal of computer time to 
formulate and solve problem of the feasible so-
lutions set determination.. However, the calcu-
lation of the values of particular performance 
criteria Фν needs a reasonable amount of com-
putation.

2. The system is “partitioned” into subsys-
tems. The couplings connecting the subsys-
tems will be called external. To separate out 
some of the subsystems as autonomous, it is 
necessary to analyze the interaction of this sub-
system with all other subsystems, as well as the 
external disturbances applied to the subsystem 
by the environment. 

3. There are one or several criteria Фν(α
(i)) 

of the ith subsystem that dominate the cor-
responding criteria of other subsystems. This 
means that decreasing (increasing) the values 
of the criterion Фν(α

(i)) by no less than a certain 
amount εα (for example, Фν(β

(i)) > Фν(α
(i)) + εα) 

entails decreasing (increasing) the value of the 
respective criterion Фν(β) for the whole sys-
tem, compared with Фν(α). Here, α and β are 
the design variable vectors of the system, and 
α(i) and β(i) are the design variable vectors of 
the ith subsystem corresponding to the vectors 
α and β. This condition implies that the system 
contains one or several subsystems that deter-
mine the quality of the system with respect to 
the νth criterion.

4. It is supposed that the subsystems can be 
optimized by using the PSI method.

5. Let t be the total time for calculating the 
values of Фν(α

(i)), 1,i m=  and T be the time for 
calculating the value of Фν(α), where α is the 
system design variable vector corresponding to 
all α(i). Then the inequality t << T is assumed 
to hold.

The idea of optimizing the whole system 
consists in the following. First, when optimiz-
ing each (ith) subsystem, we obtain for this 
subsystem a pseudo-feasible solution set iD , 
which, as a rule, is somewhat larger than the 
true feasible solution set. After this, we com-
pile the vectors for the whole system using the 
respective vectors from the sets iD . On the 
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domain thus obtained, we check whether the 
criteria and functional constraints of the system 
are satisfied and, as a result, obtain the feasible 
solution set D for the whole system. Finally, we 
search for the optimal solution over the set D.

The main point of this idea is item 3. Let us 
consider it in more detail. We will say that the 
pseudo-feasible solution set iD  for the ith sub-
system is dominant if the condition ( )i iDα ∉  
entails Dα ∉ .

Theorem 3. In the systems satisfying the 
aforementioned conditions, there ex-

ist subsystems and criteria Фν(α
(i)) such that 

the corresponding pseudo-feasible solution 
sets iD  are dominant.

This assertion makes it possible to discard 
the design-variable vectors α without calcula-
tion of the whole system, if the correspond-
ing vector α(i) violates the constraint **i

νΦ . In 
other words, optimizing the whole system is 
reduced, to a considerable extent, to the opti-
mization of its subsystems. The schemes given 
next are based on this idea. These schemes are 
presented in order of increasing complication. 
We consider different relationships between 
the design variables of the system and its sub-
systems, discuss basic possibilities of simplify-
ing the original model, the ways of determin-
ing external disturbances for subsystems, etc.

Let us consider the conditions under which 
schemes A, B, and C are utilized.

Scheme A
Let us have the mathematical models of 

subsystems that can be optimized (in a rea-
sonable amount of time). We suppose that 
each component of the design variable vec-
tor, 1( ,..., )rα = α α , of the whole system is a 
component of at least one subsystem vector α(i) 
and, on the other hand, that any component of 
the vector α(i) is a component of the vector α. 
Therefore, for each of the subsystems, the vec-
tor α(i) is uniquely determined by the vector α.

It should be noted that if it is possible to 
approximate the sets iD , the approximation of 
the feasible solution set for the whole system 
can be constructed.

However, this procedure is effective only 
when applied to comparatively simple mecha-
nisms and machines or their units. In more 
complicated cases, the assumption concerning 
the relationship between the vectors of design 
variables α of the whole system and respective 
vectors α(i) for subsystems are not valid, and we 
have to use Schemes B and C. Here, situations 
are possible where the design variable vector 
of the whole system contains components that 
are absent from the subsystem level. This can 

take place, for example, if it is impossible to 
correctly take into account some external cou-
plings when calculating the subsystem. There-
fore, these couplings are usually ignored. Vice 
versa, among the subsystem design variables, 
there can be some that weakly (if at all) affect 
the performance criteria of the system to be op-
timized. As a rule, these design variables are 
not included in the list of design variables of 
the whole system.

Scheme B
Unlike Scheme A, we assume here that the 

original model is simplified so that it becomes 
amenable to optimization. Here, external cou-
plings between subsystems are retained, and 
the simplification is due to either aggregation 
of solutions for subsystems (this has been men-
tioned already) or aggregation of internal de-
sign variables of the subsystems. Note that, if 
we succeed in constructing approximations of 
the sets iD , 1,i m= , we can guarantee that D 
is nonempty.

Scheme C
We suppose that the system contains a suf-

ficient number of design variables that influ-
ence criteria of the subsystem in which they 
are included and do not affect criteria of other 
subsystems. By sufficiency we understand that 
each of the subsystems can be optimized, pro-
vided the previous condition is fulfilled. This 
condition is also necessary because if it turns 
out that criteria of some subsystem depend on 
all or almost all of the design variables of the 
whole system, it will be difficult to optimize 
this subsystem as the whole system. If this con-
dition is satisfied, we can optimize subsystems 
in the following two ways.

1. Suppose we can optimize the simplified 
system for fixed values of the design variables 
that do not influence the ith subsystem 1,i m= . 
In other words, we can optimize the simplified 
system in a reasonable amount of time, having 
fixed the system design variables that do not 
influence criteria of the examined subsystem. 
External disturbances acting on the subsystem 
are determined as a result of computations re-
lated to the simplified model.

2. If the assumption of item 1 is not valid, 
the simplified model is not considered. In this 
case we construct simplified models for each of 
the subsystems. The simplification of the sub-
system model is regarded as acceptable if at 
least one of the subsystem performance criteria 
can be calculated with sufficient accuracy and, 
in addition, the constraint related to this crite-
rion permits us to exclude from consideration 
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a sufficiently large number of design variable 
vectors α. Having been considered separately, 
such models of subsystems are not of practical 
interest. However, provided we have a model 
of the whole system and the conditions defined 
above are satisfied, these models facilitate the 
optimization of the whole system. Note here 
that external disturbances acting on subsys-
tems are determined not from the model of the 
whole system, as occurred previously, but from 
the subsystem models themselves.

Therefore, let all subsystems be optimized, 
and for each of the subsystems, let the pseudo-
feasible solution set , 1,iD i m=  have been ob-
tained according to [1].We define the concat-
enation operation for the sets , 1,jD j m=  as 
follows. Denote by 1,2D  the set consisting of 
vectors (1) (2)( , ),α = α α  (1) 1 (2) 2,D Dα ∈ α ∈ , 
such that common (i.e., influencing both sub-
systems) design variables included in both α(1) 
and α(2) assume equal values. (If some design 
variables, such as those describing external 
couplings, have been omitted when calculating 
the subsystem, they are added to α(1) and α(2) 
when constructing vector α). We will denote 
the result of iterating this operation m times by 

1,...,mD D=   and call the set D  the superstruc-
ture over the sets 1,..., mD D . This definition 
allows us to aggregate different subsystems 
into the whole system by concatenation of 
their design variable vectors. Let the sets jD  
be defined for all 1,j m= . The set D  consist-
ing of the design variable vectors of the whole 
system α such that ( ) , 1,j jD j mα ∈ =  is called 
the pseudo-feasible solution set for this system. 
Now let us give the idea of the algorithm for 
constructing the feasible solution set D. Let us 
take two subsystems from those obtained af-
ter partitioning the system. Suppose there are n 
common design variables influencing the crite-
ria of both subsystems. We denote these design 
variables by ( ) ( )

1 ,..., , 1,2j j
n jα α = . Let us take 

an arbitrary vector (1) 1Dα ∈  and fix the values 
of the components (1) (1)

1 ,..., nα α  of this vector. 
We assume that when probing design variable 
spaces of the subsystems, we use the points of 
Pτ nets for each of the subsystems. Then, since 
the common design variables ( ) ( )

1 ,...,j j
nα α  are 

first in each of the subsystems, they will as-
sume the same values at all points with iden-
tical numbers [1]. In 2D , we find the vectors 
α(2) whose first n components assume values 
equal (to the specified accuracy) to the values 
of the respective components of the vector α(1). 
After this, we concatenate the vectors α(2) with 
the vector α(1). As a result, we obtain the vec-
tors (1) (2)

1,2( , ) Dα = α α ∈ . If we find no vec-

tor (2) 2Dα ∈  that can be concatenated with the 
vector α(1) the vector α(1) is no longer consid-
ered. After performing this operation with all 
vectors of 1D , we obtain the superstructure 

1,2D . If there are m subsystems, the process of 
constructing the superstructure D  is similar. 
We have only to ensure that the concatenation 
condition is satisfied. After constructing D , 
we calculate the system only at the points of 
this set. Thus, the original model is calculated 
repeatedly. However, it is done only on the set 
D . If the number of elements in D  is not too 
large, optimization of the whole system in a 
reasonable amount of time becomes possible. 
After introducing constraints **

νΦ , we obtain 
the feasible solution set D. Note that here, as in 
Scheme B, it is possible that D can turn out to 
be empty. In this case one should repeat all the 
described operations until D ≠ ∅ . However, 
D cannot be empty if one succeeds in approxi-
mating the sets , 1,iD i m= . We denote these 
approximations by iD . 

Theorem 4. The set D , being a superstruc-
ture over the sets , 1,iD i m= , approximates the 
pseudo-feasible solution set D  of the whole 
system with a prescribed accuracy.

Corollary. The pseudo-feasible solution 
set D  contains the approximation of the feasi-
ble solution set D for the whole system.

Note, that these methods were applied for 
design of a many- links manipulator and of a car 
for shock protection. For example, they may be 
applied to the systemtems described in [3-5].

Conclusion
1. Suggested by author methods of ap-

proximation of the feasible solution and Pareto 
optimal sets are applied to solving the multic-
riteria optimization problems of complicated 
systems. 

2. The methods of construction of hierar-
chically consistent solutions are considered.
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