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This work presents an analytical approach to predicting change in the components of aquatic ecosystems. The 
approach makes it possible to use hydrobiological data that covers a vast geographical region without long-term 
monitoring data. To address the absence of long-term data we suggest using space-for-time substitution approach 
whereby space and time variations are equivalent. It helps to have a “time scale” from geographical latitude of 
sampling points. Time series received are supposed to be used for prediction models’ creation using artificial neural 
network method. New approach approbation was carried out upon original data on phytoplankton of 12 Eastern 
Siberia large rivers within 2000-2011. Three variables that had been previously found the strongest statistical re-
lationship with climatic parameters were chosen as predictable indicators of phytoplankton: number of species/
number of families ratio, mean algal cells volume and total number of species in the sample. The prediction of these 
indicators changes was made, and the biological significance of neural network models was obtained as a result of 
this research. The main advantages and disadvantages of the approach were determined. 
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According to IPCC assessment report, dur-
ing the 20th century the average annual tem-
perature at the surface of the Earth increased 
by 0.6  °, the ice cover duration of inland wa-
ters in the middle and high latitudes of the 
northern hemisphere decreased by 2 weeks [1]. 
Issues of assessment and prediction of changes 
in the structure of aquatic ecosystem commu-
nities become more relevant due to global cli-
mate change. Obviously, the basis for building 
predictable models is the database obtained as 
a result of long-term monitoring observations. 
But due to the remoteness and inaccessibility 
for researchers at the vast areas of Far North, 
there is a lack or complete absence of long-
term data on aquatic ecosystems. In contrast 
according to a number of researchers, trans-
formations caused by global climatic changes 
may be the most dramatic in northern regions 
with continuous spread of permafrost [2]. East-
ern Siberia is among these. 

We discuss the aspects of the spatial floris-
tic and coenotic structure of the largest rivers of 
Eastern Siberia phytoplankton in our last pub-
lication [3]. The materials that guide the study 
are an array of data on the phytoplankton of 12 
large subarctic rivers, their hydrochemical, hy-
drological and morphometric parameters and 
climatic characteristics of the catchment areas. 
The information we obtained on phytoplank-
ton has a wide geographical scale, but was not 
monitored, instead was selected on the rivers 
of Eastern Siberia in different years during the 
summer runoff low. From this the most impor-
tant factors of the environment involved in the 
phytoplankton of large subarctic rivers spatial 
structure formation in the gamma-diversity 
scale were identified. The results we obtained 

show that the formation of the spatial structure 
of phytoplankton in the rivers of NorthEastern 
Siberia occurs mainly under the influence of 
climate. 

The aim of this research is to propose an 
approach to predicting change in the compo-
nents of aquatic ecosystems due to global cli-
mate change in the absence of long-term data, 
exemplified by the phytoplankton of large riv-
ers of Eastern Siberia. 

Materials and methods of research
As the material for this publication we use 

the data on phytoplankton of 12 large rivers of 
Eastern Siberia: Lena, Vilyui, Kolyma, Aldan, 
Olenyok, Vitim, Indigirka, Amga, Olyokma, 
Anabar, Yana and Chara (Fig.1). The study 
area lies from 106 ° 53’ to 160 ° 58’ E in the 
meridional direction, and from 56 ° 13’ to 73 ° 
10’ N in latitudinal direction. 800 plankton 
algological samples were collected in 2000-
2011 from rivers both near banks and at mid-
dle course, within the surface water level (0-
0.3 m of depth), during the summer runoff low 
(June-August) at the maximum phytoplankton 
vegetation period. Collection and processing 
of phytoplankton samples were carried out ac-
cording with the methods of hydrobiology [4].

The analyzed data set includes 3 quantita-
tive variables: number of species/number of 
families ratio, mean algal cells volume (μm 3) 
and total number of species in the sample. The 
data set contains only 303 observations (cases), 
which have no omissions that are inadmissible 
in the statistical data processing. 

The statistical analysis procedures were per-
formed in Statistica Automated Neural Networks 
(SANN) of Statistica 10 software package.
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Results of research and their discussion

The results of our previous studies re-
vealed a special regulatory role of environment 
climatic factors in the formation of phyto-
plankton spatial structure in the Eastern Sibe-
ria rivers [5]. The main ones (air temperature, 
Dynamic Habitat Index, duration of ice-free 
periods on rivers) are those regional climatic 
factors that determine the overall ecological 
stress of high-latitude habitats. The complex 
of climatic parameters included in the obtained 
statistical models indicates an important regu-
latory function of the vegetation period dura-
tion. The main results of our research indicate 
that the shorter the ice-free period, the lower 
the floristic proportions of plankton, the small-
er the mean cell volume, the smaller the total 
number of species and more in the Chlorophyta 
and Bacillariophyta phyla, the smaller the total 
number of species, and the larger the number 
of Cyanoprokaryota [6]. The key to understand 
the “environment-phytoplankton” model in 
the studied region, which is the important dis-
criminating factor that we determined, is the 
geographical latitude of sampling points. We 
show that with increasing latitude of sampling 
points, the basic floristic relations are reduced, 
that means the proportion of monotypic taxa 
increases. To use this data in constructing a 

predictable model, we suggest a space-for-time 
approach. The application of this method as-
sumes that the spatial and temporal variations 
are equivalent as is known [7, 8].

The most important environmental factors 
in the spatial structure formation of the river 
phytoplankton in Eastern Siberia identified 
earlier by us are the duration of the ice-free 
period and the average annual air temperature, 
both change equivalently according to the “ge-
ographical scale” (with a decrease in the lati-
tude of sampling points) and the “time scale”, 
this follows from IPCC specialists’ report [1].

From the perspective of this, when imple-
menting our data to build a predictable model, 
the absent “time scale” should be replaced with 
the “geographical latitude of sampling points “ 
variable. To construct the model, we chose the 
artificial neural network method [9] because of 
neural networks ability to model nonlinear de-
pendencies [10].

The data was entered into our analysis as 
time series ranked by decreasing latitude of 
sampling points. We used three indicators that 
has the strongest statistical dependency on the 
environmental parameters as the predictable 
parameters of phytoplankton [6]: number of 
species/number of families ratio, mean algal 
cells volume and total number of species in the 
sample.

Fig. 1. Map of the studied area. References: 1 – Anabar River; 2 – Olenyok River; 3 – Lena River;  
4 – Yana River; 5 – Indigirka River; 6 – Kolyma River; 7 – Vilyui River; 8 – Vitim River;  
9 – Chara River; 10 – Olyokma River; 11 – Amga River; 12 – Aldan River
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At the first stage the predictable model in-
cluded floristic species/families ratio. To reveal 
the data internal cyclicity an analytical method 
of Time Series spectral (Fourier) analysis was 
used. The results showed that within the 303 
observations data pool there is a periodicity, 
the value of which corresponds to 151 units. 
Using data on the internal periodicity and ap-
plying the time series regression we trained 
50 neural network models with the condition 
of a random subsampling method. 5 more per-
formance networks were left in the analysis, 
which will predict the analyzed series of obser-
vations (table 1).

All networks represent a multilayer percep-
tron by type with 151 input, 1 output and 2 to 
8 hidden neurons. In addition to architecture of 
neural network models, the summary presents 
the training algorithm and the number of the 
final iteration on which the model is obtained, 
as well as the method for activating hidden and 

output neurons. Networks are ranked by their 
performance, which is the correlation between 
the original data series and the predictable one, 
the closer this value is to 1, the better the model. 

In order to predict changes in the floristic 
variable outside our sample set, a time-series 
projection was constructed (Fig. 2), where each 
next value of the time series is constructed from 
the previous values of the same time series. A 
continuous gray curve indicates the initial data 
series, other curves illustrate the predicted se-
ries for each neural network model. As we see 
in the graph of projections, most models, in-
cluding the more performance ones, predict the 
growth of the floristic species/families ratio.

At the second stage, the total number of 
species in the sample indicator was included in 
the analysis. The results of Time Series spec-
tral (Fourier) analysis showed the presence of 
internal cyclicity of data with 15 units period. 
A summary of 10 % of the best neural network 

Table 1
Summary of active networks (number of species/number of families ratio) 

Index Networks 
name

Training per-
formance

Test perfor-
mance

Validation 
performance

Training 
algorithm

Hidden acti-
vation

Output acti-
vation

1 MLP 151-8-1 0.96 0.74 0.60 BFGS 14 Logistic Identity
4 MLP 151-8-1 0.88 0.67 0.57 BFGS 9 Tanh Logistic
5 MLP 151-8-1 0.76 0.73 0.55 BFGS 5 Exponential Tanh
2 MLP 151-3-1 0.75 0.70 0.60 BFGS 6 Logistic Identity
3 MLP 151-2-1 0.54 0.72 0.61 BFGS 6 Logistic Logistic

Fig. 2. Time series projection for variable “Number of species/number of families ratio”. References:  
1 – Species/families ratio; 2 – [1.MLP 151-8-1]; 3 – [2.MLP 151-3-1]; 4 – [3.MLP 151-2-1]; 
5 – [4.MLP 151-8-1]; 6 – [5.MLP 151-8-1]
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models is presented in Table 2. Since the in-
dicator of phytoplankton species total number 
showed a less dependency on environmental 
factors in our earlier studies [6], the productiv-
ity of the obtained models is somewhat lower 
than at the previous stage of analysis. 

The time series projection graph (Fig. 3) 
shows that all more performance models pre-
dict a small increase in the total number of spe-
cies in the sample. 

At the final stage, the mean cell volume 
was included in the analysis. The analytical 
check revealed the existence of cyclic data 
with a 11 units period. 50 neural network 
models were constructed, information on the 
5 more performance ones are presented in the 
table 3.

The mean cell volume index, according to 
our information [6], had the least strong de-

pendency on environmental factors of the three 
phytoplankton indicators included in our anal-
ysis. This is why our neural network models 
showed relatively low performance. The graph 
of the time series projection illustrates the pre-
diction of a small decrease in the plankton al-
gal cell volume (Fig.4). 

Therefore, the results of our analysis show 
that due to current trends in climate change, 
one should expect an increase in floristic pro-
portions as the most probable response of 
high-latitude phytoplankton communities, that 
means reduction in the number of monotypic 
species in the planktonic flora. It is also pos-
sible that the phytoplankton cells will decrease 
in size, which may be due to eutrophication of 
rivers. The possible increase in the number of 
algal species in the sample will probably re-
sults from invasive plankton species. 

Table 2
Summary of active networks (total number of species in the sample) 

Index Networks name Training 
performance

Test perfor-
mance

Validation 
performance

Training 
algorithm

Hidden 
activation

Output acti-
vation

3 MLP 15-2-1 0.59 0.37 0.42 BFGS 39 Exponential Tanh
25 MLP 15-2-1 0.56 0.24 0.38 BFGS 23 Logistic Identity
9 MLP 15-5-1 0.51 0.24 0.32 BFGS 7 Identity Identity
7 MLP 15-7-1 0.51 0.23 0.32 BFGS 6 Identity Identity
20 MLP 15-7-1 0.51 0.22 0.31 BFGS 6 Identity Identity

Fig. 3. Time series projection for variable “Total number of species in the sample”. References:  
1 – Total number of species in the sample; 2 – [3.MLP 15-2-1]; 3 – [7.MLP 15-7-1];  
4 – [9.MLP 15-5-1]; 5 – [20.MLP 15-7-1]; 6 – [25.MLP 15-2-1]
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Conclusions
We presented an approach that makes it 

possible to predict changes in the components 
of aquatic ecosystems using data that covers 
a vast geographical region without long-term 
monitoring information. The approach has its 
limitations. Thus, the “time scale” introduced 
by us into the analysis is obtained by the space-
for-time substitution, has no real time values, 
therefore is not locked to time, and does not 
allow to analyze the time scale of the obtained 
prediction. The result of the prediction only 
states the current change trend in the analyzed 
variable. In addition, the analysis of time series 
allows one model to perform a prediction for 
only one target variable. 

Despite the limitations, our approach will be 
useful for statistical prediction of aquatic ecosys-
tems components in the poorly studied regions of 

the North and Siberia, which often lack long-term 
monitoring data on many components of aquatic 
ecosystems. An important advantage of the pro-
posed approach is that it is based on analytical 
methods of statistics and allows you to get away 
from subjectivity in prediction problem solutions, 
which become more relevant today. 

The work was carried out as part of 
the IBPC SB RAS state task for 2017-2020 
yy. on “Fundamental and Applied Aspects 
of Flora Variety in Northern and Central 
Yakutia” (0376-2018-0001; ref. number 
АААА-А17-117020110056-0).
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