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Laminar Solution of Navier – Stokes Equation. Value of round pipeline resistance coeffi cient for arbitrary 
Reynolds number and roughness degree are known only from experiment. It is proposed, using complex solution, 
to obtain a solution of Navier – Stokes equations and based on the qualitative reasons to defi ne roughness infl uence 
on the solution of Navier – Stokes equation. It was possible to draw classical Nikuradze curves for round pipeline 
resistance coeffi cient versus Reynolds number and roughness degree with an accuracy of 10 %.
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The problem of turbulent fl uid motion de-
scription has not been solved yet. It creates 
diffi culties when oil, gas pipelines design cal-
culation is performed. Besides, there are no 
theoretical methods for description of bodies 
motion in turbulent environment. These meth-
ods would be necessary for description of mo-
tion of aircrafts, submarines or above-water 
ships in the turbulent mode. Without simula-
tion of bodies motion in wind tunnels or water 
basins, design of the bodies moving in the vis-
cous environment is impossible. 

There are approximate formulas for pipe-
line resistance coeffi cient at some ranges of 
Reynolds numbers, see [1, 2]. But they are 
empirical approximate formulas and they are 
applicable only for particular Reynolds num-
ber ranges.

Classical experimental Nikuradze curves 
of round pipeline resistance coeffi cient versus 
Reynolds number and roughness degree are 
well known. Approximation of convective term 
reducing Navier – Stokes problem to linear one 
with effective turbulent viscosity is applied. 
But such transformation distorts solution of 
Navier – Stokes equations and for matching to 
experiment the turbulent viscosity coeffi cient 
can have any value, up to negative. Galerkin 
method which brings hydrodynamic problem 
solution to system of non-linear ordinary dif-
ferential equations is applied. But in the case of 
turbulent mode, this non-linear equation system 
has complex balance positions, i.e. the solution 
is complex. Indeed, hydrodynamics equation 
system, in turbulent mode, in real plane does 
not have any solutions, the equation solution 
tends for infi nity, see [3] and main part I of the 

paper. But complex solution is fi nite. About 
physical meaning of the complex solution and 
oscillatory behavior of its imaginary part see 
[4, 5] or article III of this paper. Thus, it is nec-
essary to solve hydrodynamic problems for 
turbulent mode in complex plane. At that, the 
turbulent solution is not single-valued, there 
are fi nite number of the solution branches. 

Calculation of Round Section
Pipeline Resistance Coeffi cient 

for Incompressible Fluid
This algorithm has been used for calcula-

tion of resistance coeffi cient for pipeline with 
round cross section. The algorithm is described 
in article [6] in English. We will seek the solu-
tion of problem for cross section round pipeline 
in form , in cylindrical 
system of coordinates. As external factor acts 
only along longitudinal axis

 

where P2, P1 – pressure in initial and fi nal part 
of the pipeline; L – length of the pipeline, radial 
and angular velocities components are neglect-

ed. External action is equal to . Ac-
cording to formula (6), the pressure gradient is 
equal to . So we have the equation 

Substituting velocity value we obtain 

  (1a)
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Multiplying this equation by radius and 
performing integration over radius, as we use 
cylindrical coordinate system, we have

To obtain fi nite number of solutions 
we will multiply equation (1a) by function 

 and integrate over volume. Then 
we will obtain fi nite number of turbulent solu-
tions both for smooth and rough surfaces. Sta-
tionary laminar solution satisfying condition 

 is single-valued as in the equation 
(1a) the laminar solution is identical for differ-
ent values of . At the same time, 
likewise Schrödinger equation, fi nite number 
of turbulent solutions is found, each has its own 
energy. At transition from one state to another, 
discrete energy is radiated. The own energy 
minimum value defi nes the solution choice. 

After calculating a module of the right part 
and averaging module of deviation angle tan-
gent, we obtain

   (1b)

It will be seen that when minus sign is cho-
sen for value of average module of deviation 
angle tangent , roughness presence 
increases fl ow velocity as the full derivative 

 increases and this is 

not correct, fl ow velocity has to decrease due 
to roughness presence. 

When turbulent viscosity is taken into ac-
count, negative value of average velocity asso-
ciated with process velocity correlation func-

tion , see [1], is used and 

this leads to plus sign for average module of 
roughness inclination tangent. The movement 
equation taking into account disturbances is 

That is, convection term should be taken 
with minus, at right part of (1b) should be tak-
en with plus. 

Besides, it is necessary to choose plus 
for average module of roughness inclination 
tangent to obtain complex turbulent solution. 
Otherwise, solution describing pulse turbulent 
mode will not be steady. 

Changing pipeline radius to diameter and 

dividing by value , we obtain 

  (2)

If you use another branch of root mean 
square unsteady solution and following equa-
tion will be obtained 

  (3)

Thus, steady solution for large difference 
in pressure is 

Laminar solutions of these two equations 
at small pressure difference are the same. For 
turbulent mode with big pressure the solution 
has linear dependence of Reynolds number 
versus pressure square root. At small pressure 
increase, Reynolds number also grows and, as 
it follows from (3), pressure is increased. So 
the solution is not steady. In case of the com-
plex solution it is equal to

At that, when pressure increases, imagi-
nary part of velocity increases too and this does 
not lead to increase of real pressure, the real 
pressure keeps the value unchanged. 

If micro roughness  is distributed 
all over the pipeline surface, it is also pre-
sent on macro roughness and defi nes critical 
Reynolds number and resistance coeffi cient 
at Reynolds number 2300. Micro roughness 
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has the molecular nature, it is defi ned by av-
erage atom size equal to average geometrical 
difference between the nuclear size rA and size 
of Bohr orbit  when the distance be-
tween atoms a = 3,043A is equal to some value 
determined by properties of pipeline boundary, 
iron, titanium and carbon. Distance between 
iron atoms is aFe = 2,87A, between titanium 
atoms – aTi = 3,46A, between carbon atoms – 
aC = 3,567A, see [7]. At the same time, the 
absolute value of tangent of micro roughness 
height inclination for metal surface of the pipe-
line is determined by formula

The average tangent of inclination is equal to

In this paper, critical Reynolds number 
was calculated with respect to radius. Critical 
Reynolds number with respect to diameter is 
equal to Rcr = 2300. But why critical Reynolds 
number for the sphere is equal to 3∙105? This is 
due to different defi nition of critical Reynolds 
number. This value is equal to

where leff – effective hydrodynamic size of the 
body, including medium, a – true geometrical 
body size, and  – molecu-

lar tangent of roughness inclination. And the 
ratio  can be equal to .

Critical Reynolds number is equal to 
Rcr = 2300. Macro-roughness elements 

 are rarer and this causes increase of 
resistance coeffi cient at Reynolds numbers 
which is 12 or more times more. 

So we obtained a stationary criterion for 
Navier – Stokes equations taking into account 
one term of the solution series for one-dimen-
sional case:

For one-dimensional case, on condition of 
pipeline cross section area constancy, the con-

tinuity equation is the same. Laminar solution 
of this equation is 

For external pressure equal to , 
a complex solution and turbulent mode take 
place as Reynolds number from this point is 
equal to critical value. From experiment and 
calculation, we have critical Reynolds number 
for round pipeline 

The pipeline resistance coeffi cient for 
round cross section pipe is determined by for-
mula (we substituted to the formula the pres-
sure difference expressed through dimension-
less pressure)

The average velocity used for Reynolds 
number is equal to 

The pipeline resistance coeffi cient λlam as-
ymptotic for laminar mode in round cross sec-
tion pipeline is calculated truly.

    

Asymptotic behavior of the pipeline 
resistance coefficient is obtained for small 
Reynolds numbers when the convective 
term is small.

In case of large pressure difference, we 
have a complex turbulent solution 
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Computing more precisely, contribution of rotary imaginary part to forward velocity of fl ow 
movement corresponds to square root of imaginary part according to formula (4) 

      (4)

and it is necessary to use value of ratio of Reyn-
olds number to square root of dimensionless 
pressure as value of order 1 in the turbulent 
mode. At infi nite pressure, Reynolds number 
for the fl ow is proportional . At 
that, the smoothest surface is the surface with 
average module of inclination tangent equal to 
inverse value of critical Reynolds number. For 
solution in the form of series, another value of 
α will be calculated. This value is defi ned from 
identical values of resistance coeffi cients at 
large Reynolds numbers and molecular rough-
ness. The smoothest surface corresponds to av-
erage module of tangent of inclination equal to 
the inverse value of critical Reynolds number 
as the smallest modules of tangent of inclina-
tion correspond to molecular type of rough-
ness. At that, effective diameter is less than true 
diameter. The average module of tangent of in-
clination angle can not be less than molecular 
roughness and its minimum value is equal to 

. That is, 1 is the maximum value 

of ratio of effective diameter to true diameter 
because α = 2. For external problem, effective 
diameter will increase, and the coeffi cient will 
be determined by formula

Coeffi cient β is proportional to

At zero macro roughness, effective diam-
eter is equal to 1, that is, when roughness is 
increased, effective diameter decreases. Value 

 was obtained from nu-

merical experiment that corresponds to fourth 
root of mean square deviation. At zero macro 
roughness, micro roughness presents. And ra-
tio of tangent of macro inclination roughness 

to micro roughness is more than 

At l/k = 30, we have value of effective 
pipeline diameter

At the same time, diameter is changed only 
for coeffi cient of pulsing part of the solution, 
i.e. for imaginary part from where the multi-
plier  origi-
nates as the imaginary term is proportional 
to  which is averaged. At that, value 

 corresponds to fourth root of mean 

square deviation.
Here, infl uence of walls roughness in tur-

bulent fl ow on imaginary part of Reynolds 
number of the fl ow is taken into account. To 
obtain curves with constant roughness height, 
it is necessary to enter effective average mod-
ule of tangent of roughness inclination angle. 
The effective average module of tangent of 
roughness inclination angle has to depend on 

external pressure . 

And in points of infi nite Reynolds num-
bers or dimensionless pressure, we have the 
roughness corresponding to constant rough-
ness height

where k – mean square root of the roughness 
height; r0 – radius of round cross section of the 
pipeline. 

The formula is chosen in such a way that 
it defi nes correctly dependence of Reynolds 
number versus external pressure and pipeline 
resistance coeffi cient at infi nite Reynolds num-
bers and external pressure 

at resistance coeffi cient equal to 
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When average module of tangent of roughness inclination angle  is constant but roughness 

height k is varying we obtain a curve which differs from Nikuradze curve.

Fig. 1. Curve of round pipeline resistance coeffi cient versus Reynolds number for different mean square 
root tangent of roughness inclination angle 

But Nikuradze formula is obtained for constant ratio of pipeline radius r0 to average rough-
ness height k. The formula (4) contains effective average module of tangent of roughness in-
clination angle expressed through ratio of pipeline radius to average roughness height using 
dimensionless pressure

Value . Infl uence of effective av-
erage module of tangent of roughness inclina-
tion on fl ow property depends on Reynolds 
number or pressure difference.

Empirical formula for fi nding of coeffi -
cients α(ξ0), β(ξ0), γ(ξ0) is following

       

At the same time, at the beginning of for-
mation of the complex solution imaginary part 

, or at the beginning of turbulent 
solution, roughness inclination tangent is equal 
to approximately 1, and curves for different 
roughness inclination tangents coincide. 

At that, fl ow resistance coeffi cient for 
round pipeline is determined by formula 

, Reynolds number calculated 

based on the average velocity of fl ow move-

ment is equal to . Resistance coef-

fi cient at infi nite pressure is proportional to 

. Here we demon-

strate curves for solution obtained using one 
term of the series.

To compare theoretical and experimental 
curves of resistance coeffi cient dependence 
versus fl ow Reynolds number, experimental 
curve by Nikuradze is given in Fig. 2, on the 
right. Error of the theoretical curve relative to 
experimental one is about 10 %. But for lami-
nar mode two solutions (2) and (3) are possi-
ble. Averaged solution will yield zero convec-

tion term and dependence  that is not 

taken into account at the computation. In the 
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theoretical curve convective term is taken into 
account which became equal to zero after aver-
aging in laminar mode. 

This curve was calculated for constant fl ow 
temperature over the fl ow cross section there-

fore in case of weak dependence of kinematic 
viscosity on temperature the formula will not 
change. For turbulent mode, it is necessary to 
substitute into the formula normalized pressure 
and ratio of pipeline radius to roughness height 

   

  
Fig. 2. Calculated and measured dependence of round pipeline resistance coeffi cient versus Reynolds 

number for different roughness

And the formula is constructed so that . In case of the laminar mode there is 
a simple formula for Reynolds number:

Algorithm for Solution of Internal Hydrodynamic Problem 
for Arbitrary Flow Geometry

Navier – Stokes equations in Cartesian coordinates is

   (5)

We will solve a three-dimensional laminar stationary problem without convective term for 
defi ned external action gl 

Let us transform this equations to dimensionless form by dividing it by v2/d3, as a result we 
obtain dimensionless equation

             

Following function is a solution of this problem
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We will seek solution of continuity equation for external action, where ri – response to exter-
nal action

  (6)

From this we obtain equation for fi nding of fl ow pressure 

We will seek the pressure value in the form . Then we will substitute 

pressure into expression under the integral sign, multiply by φm(y1, y2, y3), and perform integration 
over the volume, then we obtain a system of linear equation

bm = Amnan.
Expressions for coeffi cients are

where hl(y1, y2, y3) is defi ned by external action. Let us transform Navier – Stokes equations to 
dimensionless form by dividing it by v2/d3, and we have dimensionless equation

   

         

Then we multiply Navier – Stokes equations by area of fl ow tube cross section, write the equa-

tions along laminar solution and enter fl ow tube with constant fl ow, see [8]. . In the 

convection term and in pressure gradient, we enter the derivative in the direction corresponding 
to the direction of fl ow lines in laminar solution. When substituting of the solution into equation 

   (7)
where Ss – fl ow tube cross section in laminar 
mode, expression Rs[y1(α, β), y2(α, β), y3(α, β)] is 
a stationary solution of Navier – Stokes equa-
tions without convection term which is equal 
to zero for fl ow tube as it does not depend on 
longitudinal coordinate. 

We built these fl ow tubes for any external 
action which affects pressure difference. Fur-
ther we consider roughness and under certain 
conditions obtain complex turbulent solution 
which is associated with infl uence of quadratic 
convection term with small multiplier, taking 
into account roughness, which yields complex 
solution at large pressure difference. At the 

same time, we reject real solution which was 
obtained for another sign of the module of av-
erage deviation, as it does not defi ne fl uctuat-
ing, turbulent solution. And imaginary part of 
the solution defi nes the solution pulsations. 

If another sign of square root is chosen 
and correlation function of the process , 
where  is a velocity deviation from its aver-
age value, is taken into account, turbulent vis-
cosity becomes negative. 

Let us substitute the solution (7) into Na-
vie – Stokes equation, integrate it over fl ow 
pipe and divide by pipeline cross-sectional 
area. Then the convective term will be equal to
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Taking roughness into account results in 
dependence of the pipeline radius a(s) on mac-
ro-roughness. Further we will extract the term 
da/ds associated with roughness and will fi nd 
average value of its module. At the same time, 
we will make averaging of the equation with 
respect to s. It can be found out that convec-
tion term in laminar mode for smooth surface 
is equal to zero, and roughness has to be taken 
into account for non-zero value. So, we have 
the equation 

To take into account roughness of pipe-
line surface and obtain turbulent solution, it is 
necessary to consider the average module of 
tangent of roughness inclination angle. Then 
this convective term will have a small multi-
plier, and the convection term will be non-ze-
ro. This term is proportional to average value 
of tangent of module inclination at roughness 

. At the same time, there is a term 

depending on variable pipeline cross section 

area . And fl ow lines of complex turbulent 

solution corresponding to fl ow lines of laminar 
solution will remain the same but there will be 
a solution pulsing around laminar fl ow lines. 
At that, the pulsations are defi ned by imagi-
nary part of velocity, and the imaginary part of 
the solution, equal to a constant, means pulsa-
tions with amplitude equal to imaginary part 
of velocity.

Now, we will substitute the solution (7) 
into Navier – Stokes equations and will in-
tegrate along fl ow tubes, will multiply by Rcr 
in domain where this value meets a condition 

 and where  – average 

module of inclination tangent for not remov-
able micro roughness with envelope forming 
macro-roughness, and we will obtain the fol-
lowing equation

 

where Rs(y1, y2, y3), p(y1, y2, y3) are determined 
from laminar solution and continuity equation, 
and function of external action hl(y1, y2, y3) is 
defi ned. So it was found out that micro rough-
ness located along all length of the pipeline 
defi nes critical Reynolds number. This micro 
roughness is less than macro-roughness which 
affects resistance coeffi cient at large Reynolds 
numbers. But as Reynolds number depends on 
pipeline geometry through its diameter, then 
critical Reynolds number is inversely propor-
tional to the average module of tangent of mi-
cro roughness inclination and depends on pipe-
line geometry. At the same time, reduction of 
pipeline radius results in negative da/ds value 
and, therefore, absence of complex turbulent 
solution in the narrow place, i.e. the critical 
Reynolds number raises. On the contrary, the 
pipeline widening causes increase of da/ds 
and, therefore, reduction of critical Reynolds 
number and can result in earlier occurrence of 
complex solution, i.e. the turbulent mode. 

And, as Reynolds number depends on tem-
perature through dependence of kinematic vis-
cosity on temperature, it is obvious that occur-
rence of critical Reynolds number depends on 
environment temperature. 

Coordinates of balance position are defi ned 
from a quadratic equation

   

At the same time, the laminar solution 
, as the convective term has 

different signs in laminar fl ow. In turbulent 
conditions the solution the convective term of 
one sign is not sustainable.
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In this case, turbulent formula for roughness calculation is applicable due to identical averag-
ing method in turbulent mode

where  – effective average 
tangent of roughness inclination, ξ0 – ratio of 
roughness height to pipeline radius and critical 
Reynolds number  is value of Reynolds 
number corresponding to the beginning of the 
complex solution. At the same time, for small 
Reynolds number we obtain a laminar solution. 
But diffi culties in obtaining of turbulent solu-
tion do not come to an end. It is necessary to de-
fi ne effect of the surface roughness and for this 
use of experimental data is still inevitable. In 
principle, exact dependence of Reynolds num-
ber for smooth surface on macro-roughness is 
necessary to be learned. But external problem 
has some features associated with existence of 
resistance crisis which is caused by presence 
of a trace behind the body placed into the fl ow. 
This trace does not present in internal problems 
such as fl ow in pipeline.

Specifi city 
of Flow Velocity Calculation 

for Sphere
Let us fi nd out solution of Navier – Stokes 

equations for external problem. We have lami-
nar solution for sphere motion in fl uid for small 
Reynolds number. It yields the following ve-
locity distribution, see [8]:

At that, pressure dependence on fl ow pa-
rameters is 

 

Motion equations in spherical coordinate system for solutions which do not depend on angle 
φ can be written as

    

Let us change coordinate system to ξ, τ, θ with unknown Rr, Rθ, P, the coordinate system is 

defi ned by formula    , after division of the equation system by 

 we will have equation system
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At that, in dimensionless constants, solution can be expressed as 

        

But if you consider solution for one domain θ  [0, π], zero value will be obtained for coef-
fi cient Rx. So, the domain should be divided into two parts θ  [0, θ0], θ  [θ0, π] and value θ0 
should be found out of equality of Rx coeffi cients computed for different domains. At that Rx – 
common for either of Reynolds number components as laminar solution.

Here we will show how to fi nd solution for the fi rst equation, solution of the second equation 
can be found similarly. For this, for internal problem, we will multiply equation by r2sinθdrdθ. For 

external problem, we will enter variable  for ξ  [1, 0] and the multiplier will be following 

. Let us write down the equation with all multiplies:

Integration over the angle [0, π] yields zero right part of the equation. So, it is necessary to 
divide this solution into two domains and match solutions at the boundary. At low velocity, this 
solution will be real but it is possible that the angle is complex. 
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Let us integrate this equation over two domains θ  [0, θ0],  and θ  [θ0, π], , then

Equation for another domain is

For laminar mode and very small Reynolds number R0 << Rcr, we have following expression 
for Reynolds number 

Solution obtained is symmetrical: θ0 = π/2, Rx = 0,8214. If non-linearity is taken into account:

    

    

Where parameter  is defi ned for area of Reynolds number increase. Another solution is:

   

And complex Reynolds number Rx corresponds to beginning of turbulent mode.
If you take into account all coeffi cients, solution θ0 = π/2 will not be obtained but you will 

have two values for coeffi cient θ0. It will be found that two angles θ1, θ2 exist for each Navier – 
Stokes equation which correspond to two different variants of domain division. In case R0 → 0 
angles θl = π/2 are equal, we have Rl(θl) = 1/2. Coeffi cients R1(θ1) = R2(θ2), R3(θ3) = R4(θ4) will be 
found from two Navier – Stokes equations which will be integrated separately over domains [0, 
θ0], [θ0, π]. At that, the two fi rst of the angles will be found from the fi rst Navier – Stokes equation, 
and the third and the fourth – from the second one. 

Final solution will be found in the form
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We substitute the decision in two equations 
of Navier – Stokes and in the continuity equa-
tion, we average on space and we fi nd the sta-
tionary solution.

And Cartesian components of velocity are 
equal to

For the following examples initial data 
were taken which do not match the solution. 
Fig. 1 shows a plot for real angles versus two 
angles and on condition

    

Rl(θl) = 1; R0 = 1,5.
And for all plots r = θ = 1.

Fig. 3

 Fig. 4

Fig. 5 

Fig. 6

Next Fig. 4 shows results for Reynolds 
number R0 = 150, angles 

   

Rl(θl) = 0,1.
The more is Reynolds number, the more is 

deviation of angles θl from π/2. Fig. 5 shows 
fl ow with Reynolds number R0 = 5000 and 
complex angles

 

    Rl(θl) = 0,1. 
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Two singular domains are seen in front of 
the sphere and behind the sphere. In these are-
as, velocity corresponds to tangent line. Plot in 
Fig. 6 was calculated for the same parameters 
as plot in Fig. 5 but Reynolds number of the 
body is equal to R0 = 50000. The fl ow param-
eters are maximal, pattern remains the same as 
for parameter R0 = 5000. 

Fig. 7 was plotted for parameters

      

Rl(θl) = 0,1; R0 = 500. 

Fig. 7

Velocity distribution is so that there is 
a singular domain in front of the sphere – in-
compressible fl uid can not penetrate into this 
area. And this area, inaccessible for fl uid fl ow, 

has large length that provides conditions for 
origin of long vortex path.

To change pattern, it is necessary to change 
angular boundaries and relation between coef-
fi cients Rl(θl). Besides, at large Reynolds num-
ber, imaginary part increases and, hence rough-
ness effect is rather large.

For incompressible liquid the equation of 
continuity along a current tube with longitudi-

nal coordinate s has an equation . 
As the normal derivative from a normal com-
ponent of speed is equal to zero for border of 
a special zone, we have constant longitudinal 
speed on border of a special zone. The con-
vective term on border of a special zone is 
equal to zero. At that critical Reynolds num-
ber for external region off the body is equal 
to , where a – specifi c body 

size, lcr – length of the smooth body envelope 
when condition of complex coeffi cients Rl(θl) 
beginning is satisfi ed. Ratio  is found from 

non-linear equation for lcr fi nding, which cor-
responds to beginning of complex solution. 

For the plots computing, following equa-
tion system was resolved in dimensionless co-
ordinate system 

      x0 = –2; y0  [–4, 4].

For this, we write down new formula which 
is necessary to substitute to Navier – Stokes 
and in the continuity equation, to average the 
solution and to defi ne new multiplies r, θ, P 
by which the solution will be multiplied
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Let us draw the curves for real boundaries 
of the area defi nition. 

Vertical axis characterizes module of differ-
ence between coeffi cients calculated for two dif-
ferent areas. On horizontal axis the real angle θ0 
is shown. In Fig. 8, the only root for small Reyn-
olds number is shown. In Fig. 9, there are two 
real roots corresponding to the laminar mode 
with Reynolds number equal to R0 = 100.

Fig. 8 

Fig. 9

In Fig. 10, 11 complex roots existence is 
shown, the roots are equal to

   
The imaginary axis values change in inter-

val [0, 2], real axis values – in interval [0, π]. 
Description of Singular Domain

At that, solution for fl uid fl ow has dis-
continuous zones, velocity perpendicular to 
boundaries of these zones is zero. Therefore 
fl uid in these zones is independent of main 
fl ow. But tangential velocity components on 
boundary have to coincide. Now we will fi nd 
the solution in these zones. Real part of the so-
lution R = R1 + iR2 corresponds to component 
z, the imaginary part – to component x, and the 
x axis rotates around the axis 0z with change 
of angle φ. But the solution is to be found for 
fi xed angle and should not be dependent of this 
angle. Then the solution of Navier – Stokes 
equation will be 

  (8)

Where new scaled angular variable 

 is entered, where θmax, θmin – 

extreme values of turbulent zone boundaries. 
Besides, we will enter the scaled radius

where amax(θ), amin(θ) – maximum and mini-
mum value of radius of the turbulent zone 
boundary. In case if denominator is zero, value 

 should be used for r. Then 
lnρ will be continuous and equal to π in this 
point. Coeffi cients bnm will be defi ned from 
values of the laminar solution within turbulent 
zone boundaries r = amin(θ); s = amax(θ), where 
θ [θmin, θmax].

Fig. 10 



EUROPEAN JOURNAL OF NATURAL HISTORY № 3, 2016

81Physical and Mathematical sciences

Fig. 11

Coeffi cients bnm will be determined by formula

As boundary values at the beginning and the end of the period differ and area boundaries 
expressed in coordinates r, θ are not rectangular (in coordinates Φ, lnρ velocity on the boundary 

is variable), a series will be discontinuous, that is, the coeffi cient bnm decreases as  when 

n, m → ∞, i.e. this solution is discrete. In singular domain, in coordinates lnρ, Φ, the solution 
is discrete due to discretization of functions R(lnρ0, Φ) in the form of discrete series. But as the 
description of singular domain is performed relative to coordinates lnρ0, Φ, the singular domain 
is discrete. Vortex path or pulsing turbulent mode with variable boundary is formed in this area 
at laminar mode. 

The formula (8) can be rewritten in the form

   (9)

where in this case we have 

and then step with amplitude Anm and phase     will be found from equations 

where indexes n, m = –N, ..., –1, 1, ..., N. 
It should be noted that A00 = b00. If the series in the left part of (9) is not summarized directly 

as this requires too large number of terms, then the right part of (9) will determine its discrete sum 
for fi nite number of terms. It should be noted that 

    
is almost periodic coordinate of the step.
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Why the turbulent solution in singular do-
main has the pulsing character with variable 
boundaries? The turbulent area boundary is 
not smooth function due to discreteness of the 
turbulent solution, unlike the laminar solution. 
This results in non-equality of tangential com-
ponent of the solution and boundary pulsation 
in case of turbulent mode. 

For description of laminar fl ow, it is nec-
essary to enter dependence of specifi ed ra-
dius on time 

  

where Sh is a Strouchal number. At that, the 
pattern will fl uctuate with Strouchal frequency 
according to value of ln ρ0 and this will lead 
to vortexes rotation in opposite directions as 

the frequencies under condition   

have different signs. At the same time, on the 
area boundary, frequency is zero, i.e. the solu-
tion on boundary is continuous in laminar mode. 

Solution of the Flow Problem 
for Arbitrary Smooth Body 

in Spherical Coordinate System
Laminar solution of the fl ow problem for 

arbitrary body in spherical coordinate system 
we regard resolved in the form of fi nal formula. 
That is, value of Reynolds number and pres-
sure for laminar mode is found:

We resolve each Navier – Stokes equation 

by multiplying by , integration over 

inverse radius and angle θ, over two areas, 
which have one of the boundaries θl, l = 1, 2. 
We defi ned this boundary from equation 

. As the equation for 
these angles fi nding is the second degree one, 
two angles, θk1, θk2, are found. We defi ne value 
θ0r(φ) for laminar solution and consider this 
in formula for Reynolds number taking area 
boundaries into account. 

We do the same operation with other 
components of Reynolds numbers. Further 
we find out the solution by entering four un-
known constants

We substitute these functions into Navier – 
Stokes equations and continuity equation, we 
integrate over the volume and then we obtain 
4 constants r, θ, φ, P. These coeffi cients 
can be complex describing the complex turbu-
lent solution. Real part of the solution will be 
an average solution, and imaginary part – mean 
square deviation. At that, as the angle enters 
into solution function in non-linear way, it is 
possible to integrate on periodic angle φ with-
out obtaining of zero integral. When solving 
non-linear equation, there can occur complex 
function θrl(φ), θθl(φ), θφl(φ), l = 1,2. Similarly, 

  (10)



EUROPEAN JOURNAL OF NATURAL HISTORY № 3, 2016

83Physical and Mathematical sciences

it is possible to fi nd the problem solution for 
sphere, determining not laminar pressure, but 
such solution will be complicated. It is possible 
to add angle dependence of the sphere solution 
versus angle φ in Cartesian coordinate system 
and to solve a problem defi ning θ1(φ), θ2(φ), 
then dependence of the solution on angle φ will 
be found. At the same time, it is necessary to 

keep dependence on spherical coordinate sys-
tem at Cartesian components versus velocity 
and pressure. In curvilinear coordinate system, 
the derivative is determined by formula

 

Where

From this we defi ne  through depend-

ence . The second derivatives with 

respect to xl can be found similarly but in this 
case dependence on mixed derivatives with re-
spect to r, θ, φ will occur. 

At that, as  velocity component 

Rφ will occur. As θxl = θ0x, θyl = θ0y, θzl = θ0z, 
this dependence vanishes at small Reynolds 
number. 
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