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Values of large dimensionless unknown functions (for example, a large Reynolds number) can be found out as 
solutions of non-linear partial differential equation. In this case these equations can be brought to some number of 
non-linear ordinary differential equations. Turbulent solutions corresponding to large values of unknown function 
are complex. Transition from real solution to complex turbulent solution is realized through infi nity of the right 
parts of ordinary differential equation system to which Navier – Stokes equations are brought. Thus, real solution 
of Navier – Stokes equation for turbulent mode yields function going to infi nity. At the same time, complex solu-
tion for the turbulent mode is fi nite. Fluid fl ow resistance coeffi cient is calculated for round pipeline with different 
pipeline walls roughness.
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Problem Formulation
Let us consider Navier – Stokes problem and continuity equation for incompressible fl uid. 

They are as following

Boundary conditions on the body boundary adjoining to fl uid are V(t, r) = 0, r  S where 
S is a body boundary. We will seek a solution in the form of series using Galerkin method 
(hereinafter N → ∞)

where space C2 is twice continuously differentiable function, ψ0(r) is a defi ned external action 
which, in case of pipeline, is equal to

where z – direction of the pipeline longitudinal; P, P0 – pressure at the beginning and the end of 
the pipeline; L – pipeline length.

Now we substitute these functions into the differential equation, multiply by ψm(r) and inte-
grate over the volume, then we obtain following differential equations system:

    m = 1,..., 3N;

     m = 1,..., N. (A.1)

After we resolved the second equation (A.1), substituted

    n = 1,..., N

from the second equation (A.1) to the fi rst one, we have

   m = 1,..., 2N;
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     m = 2N + 1,..., 3N. (A.2)

Defi ning xn+3N(t), n = 1,..., N corresponding to pressure change, from the second equation 
(A.2) and substituting found out value into the fi rst equation (A.2), we have equations system

      m = 1,..., 2N.  (A.3)
At that 

       n = 1,..., N.

Where values 
    l = 1,..., 3;           n = 1,..., N. 

are known and coeffi cients Fmpq, Gmp, Hm,       cnm, bnm are constants. This 
system of non-linear ordinary differential autonomous equations (A.3) is to be solved. Solution 
convergence issues will be discussed below in the text. 

Finding of Solution of Ordinary Differential Equations in Complex Plane
Let us consider system of non-linear differential autonomous equations

  l = 1, ..., N.  (1) 

Navier – Stokes equation system and continuity equation can be brought to system of non-
linear differential equations:

      m = 1,..., N,  (2)

where three-dimensional velocity is defi ned by 

formula  

At that, function φn(x1, x2, x3) is given in the form 
of sine or cosine. Then coeffi cients cn(t) for 
continuous function decrease not more rapidly 
than  when index increases and series re-
duction is possible, i.e. instead of infi nite num-
ber of terms, fi nite terms number is used. At the 
same time, the infi nite number of terms forms 
convergent series. 

It was found out that a set of N + 1 coor-
dinates for the system balance position exists 
(2). Indeed, let us assume that we have found 
several balance positions with coordinates
  l = 1, ..., N. Let us seek the solution in the 
form . For that we will substitute the 
solution into the right part of the differential 
equation (2) and will equate it to zero, then fol-
lowing equations system is obtained

 

For existence of non-zero solution of this 
differential equation, it is necessary that deter-
minant is equal to zero:

Given zero determinant, coeffi cients  from 
linear equation will be defi ned up to a multi-
plier. This multiplier will be defi ned from equal-
ity to zero of determinant of non-linear equation 
system. Thus, we have N unknown multipliers, 
which will be defi ned from determinant equality 
to zero. I.e. set of N + 1 coordinates of the sys-
tem balance position exists. 

Differential equation system (2) for non-
multiple balance positions can be expressed 

by means of  substitution. At that, 

the system (2) balance positions  l = 1, ..., 
N, s = 1, ..., S will be transformed into balance 
positions  l = 1, ..., N, s = 1, ..., S and eigen 
values and eigen vectors of the linearized sys-
tem (2) will be defi ned as.
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Equation system (2) will be

   (3а)

Values  satisfy condition . k = 1, ..., N, s = 1, ..., S.
Equation system (3a) can be written as

   (3b)

where multiplier which can never be equal to 0 is used – , and this multiplier is 
equal to

After this multiplier is substituted to (3b) we obtain (3a). Now we will demonstrate that this 
multiplier can never be equal to 0. When  l = 1, ..., N the limit of 

is fi nite.
Here we canceled out a multiplier , as we consider only not coincident roots being 

coordinates of balance position. So we showed that this multiplier does not equal to zero after 
infi nite time. 

Thus, the differential equation can be written as

        l = 1, ..., N,  (4)

where Hl(t, t0) – function which tends to infi nity when coordinates tend to balance position. For 
real solutions, this function is monotonic. That is, we have obtained dependence of the solution 
on value Hl(t, t0), which is monotonic time-dependent function.

Lemma 1. Necessary and suffi cient criterion for unknown function to tend to steady balance 
position coordinates is Hl(t, t0) → ∞ when t → ∞. At the same time, balance position coordinates 
have to have a real part. 

So, we have 

   (5)

at t → ∞ and hence Hl(t, t0) → ∞, l = 1, ..., N 
as integral of constant. Inverse theorem is also 
valid, on condition Hl(t, t0) → ∞, l = 1, ..., N, 
one of steady balance positions is realized. 
This is a consequence of solution type; on con-
dition Hl(t, t0) → ∞, l = 1, ..., N, according to 
Lemma 3, negative real part of value  exists 
in formula (6) and solution tends to balance po-
sition coordinate  in formula (4). If balance 
position coordinates have real parts, values  
have real part. At that t → ∞. 

Lemma 2. Solution of differential equation 
(1) is function xl(t) which satisfi es to equation (6). 

To obtain (6), let us divide equation (4) by 
product of multipliers  and multiply (4) 
by dHl(t, t0). Then we will decompose obtained 
fraction into sum of simple fractions and perform 
integration. The following equation is obtained

 

 l = 1, ..., 2N.
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Here for the case of sound energy emission in interval [t0, t] different branches of logarithm 
are obtained.

After the expression exponentiated, we have (6)

  (6)

where all values of balance position coordinates are not multiple and are not dependent on ra-
diation process occurring in an interval [t0, t]. In case of laminar real solution, radiation will not 
appear, and in case of turbulent solution, followed by radiation, there will be energy transition. 
Really, presence of radiation yields the complex solution which describes turbulent pulsing mode. 
At that, at solution transformation, turbulent mode is followed by sound noise. Exponential mul-
tiplier does not affect balance position coordinates which defi ne stationary solution. Existence of 
multiplier  changes calculated main branch of solution for coordinate xl, but will 
not affect balance position coordinate. 

Lemma 3. Sum of coeffi cients  by index s is equal to zero, i.e. 
In case if following fraction decomposed. 

where QS–1(y) is S – 1-ordered polynomial. Equation  will remain satisfi ed,

Let us prove this. For this let us consider a sum

This sum is equal to P(y) = QS–1(y). We write formula for polynomial equal to QS–1(y), dividing 
the equation by product  we obtain

If suppose that , equality  
is satisfi ed when s + 1 balance position exists.

But to realize the solution, it is necessary to 
know balance positions of this non-linear equa-
tions system. Besides, balance positions can be 
multiple that changes the solution fi nding process, 
it becomes random or chaotic, but we are not go-
ing to consider this case. Nevertheless, it is possi-
ble to prove the following important theorem.

Theorem 1. Cauchy task is considered un-
der arbitrary real initial conditions for system 

of orthogonal non-linear ordinary differential 
equations (1). If system (1) has complex conju-
gate balance positions with real parts then, for 
fi nite real argument t, Cauchy problem solution 
for the system (1), for real initial conditions, 
tends to infi nity. Then this solution becomes 
a complex one, tending to balance position in 
case when complex balance position coordi-
nates have real part. Here the right part of (1) is 
considered as being a regular function, real for 
real arguments. This function has fi nite number 
of non-multiple balance positions. 
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Proving
If the system (2) is resolved at non-multiple balance positions then, according to Lemma 2, we have

  (7)

where  selected complex balance position,  other balance positions. Coeffi cients  sat-

isfy condition , according to Lemma 3. At that, in sum  real part value  in case of 

complex solution  presents twice as all values  satisfy condition , so we have formula

Let us substantiate solution (7). For that we will modify two complex conjugate terms of the 
solution (for expression simplicity, index l is omitted)

   (8) 

where . After integration (8) over argument x, we obtain formula (7)

The solution is  where  

At that, value of  is real 

due to existence of complex conjugate balance 
positions. Thus, for  and fi nite t, we 
have equation 
  (9)

Solution of this equation tends to infi nity. 
At that, solution of differential equation for 

rising Hl(t, t0), according to Lemma 1, can have 
complex roots

At that, as equation  is satisfi ed 

according Lemma 3 and balance positions 
have real parts, values with negative real part 

 exist, so convergence to one of the balance 
positions takes place. Real solution will tend to 

infi nity at that existence, and uniqueness con-
dition for Cauchy problem will be breached. 
According to Lemma 1, at Hl(t, t0) infi nity, 
unknown function will tend to one of balance 
positions. This balance position cannot be real 
as the real solution is infi nite. This means that 
the solution will have a branching point and 
will tend to complex balance position. That is, 
for balance complex positions, fi nite complex 
solution is obtained at Hl(t, t0) change. Thus, in 
some point a complex solution will begin.

End of the proof.
Now we will give an example describing 

this property of the differential equation, tran-
sition to the complex solution. So, for the dif-
ferential equation, there can be a complex solu-
tion instead of infi nite real one
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And these balance positions are purely 
imaginary, that is, the solution cannot tend to 
balance position. And the real solution of this 
differential equation tends rapidly to infi nity

Using an implicit solution fi nding scheme, 
we obtain the following equation

Seeking solution in respect to unknown 
function x, we obtain the following implicit 
scheme

This implicit scheme with constant step cor-
rectly describes solution tendency to infi nity. 
At reduced calculation step, this scheme yields 
larger value of variable t, that is, it yields larger 

value of unknown function. That is, it correctly 
describes behavior of the differential equation 
solution up to infi nity. When infi nity is reached, 
under condition , the 
fi nite complex solution will be found. Numeri-
cal computation of this equation has validated 
this analysis of the solution obtained. 

At that, the complex solution possesses 
new properties; it performs complex rotation 
around balance position. At the same time the 
real solution tends to infi nity, i.e. right part of 
the differential equation tends to infi nity and 
existence and uniqueness condition for Cauchy 
problem are breached, so additional complex 
solution is arisen.

The solution for complex initial data is 
given by formula

 
for any t. Thus, approximately we have

If we choose branch with positive β, we obtain converging series. At that, this fraction de-
nominator never becomes zero.

That is, for real plane, fi nite solution does not exist. In complex plane, fi nite continuous solu-
tion exists in the case if balance positions are not multiple. 

But there is a question – what is the physical meaning of imaginary part of the solution? 
Physical Meaning of Exact Complex Solution

So, for turbulent solution corresponding to complex balance position coordinates, we have solution

The solution consists of step term in the form of delta-function and smooth part

As, at averaging over period, tangents sum without taking into account step term is equal to 
zero, we will study the step term of the solution. At that, this solution has singularity when condi-
tion  is satisfi ed. Step term of the solution is
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That is, imaginary medium pulse is origi-
nated. Imaginary velocity means fl ow rotation 
or oscillation; fl ow step is originated which 
will be destroyed in time ΔD(hl) = π to origi-
nate repeatedly. Number of such steps is fi nite. 
But how to average this steps? You should pass 
to probabilistic interpretation of the descrip-
tion. That is, to average imaginary part over the 

period  Then we have local 

complex average solution

 

Continuous part of the solution has posi-
tive and negative parts which are compensated 
when averaged. To obtain a global average 
value it is necessary to average with respect to 
value k, so we have

We obtained complex velocity; imaginary 
part is defi ned up to multiplier. Real part of 
complex velocity corresponds to average value 
of velocity, and imaginary part is a mean square 
deviation. Simultaneously, there is a vortex 
motion consisting of positive and negative val-
ue of root from . 

Contribution of imaginary part to average 
value is equal to

    

At that, module of average value, that de-
fi nes real solution, is equal to

   

where balance position coordinates and time 
are non-dimensional, then, as we calculate 

square root of imaginary part, we defi ne 
branch . Thus, average single-valued 
solution is found. 

This multiplier γl depends on the surface 
roughness and it is found from numerical ex-
periment. As numerical experiment has shown, 
for round smooth pipeline the multiplier is 
equal to γl = 1. At that, the smooth pipeline 
has a constant, minimum, average module of 
roughness inclination tangent equal to 

that is associated with molecular roughness, 
see article II section 1. For this, one term of 
series which determines fl ow velocity is used. 
We calculate this value for one term of the se-
ries for smooth surface. The solution is 

 

where 

This value exactly corresponds to experi-
mental formula for round cross section pipeline 
if the solution roughness is taken into account. 
At that, to take roughness into account for inter-

nal problem,  is multiplied by ,

here k/l is a constant average tangent of fl ow-
ing surface inclination. From this we obtain 

, see article II section 1. At 

constant average roughness height, the coef-
fi cient γl is not a constant as k/l value is deter-
mined by other formula depending on dimen-
sionless pressure, see article II section 1. 


