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In this work conditions of solutions’ existence
that are described by a significantly non-linear sys-
tem of the second order of the following type with
slowly altering coefficients:
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X" (x,y,7), Y™ (x,y,1) — are multinomials
reative to x, y of any final degree of m, and they do
not contain terms of lower than m — order with coef-
ficients that are limited functions on ¢ t and with the
first derivatives, limited on T, pt is unlimitedly small
parameter, T = p is slow time.

Let us imply that right parts of the system (1)
equal zero only in the point x =y = 0.

The problem study goes with the function of
Lyapunov, via method, introduced by G.V. Kamen-
kov [1].

First of all, let us show a topological study of
so-called «shortened» system. Shortened system
that corresponds to initial equations (1) has the fol-
lowing type:

=L ey
dt
@& 3)
p=—=Y" .
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Questions of qualitative theory of stability of
differential equations according to Lyapunov were
studied by G.V. Kamenkov in 1935.

G.V. Kamenkov showed [1] that behavior of
integral curves around the coordinates beginning of
two functions:

2

x Y, ) -y X (x,y) = F(x,p);
x X" (x,y)+y Y (x,p) = R(x, y)

depending on structure of these functions can be
described in a number of ways. Let us say that
equation F(x, y) = 0 has substantial roots (each sub-
stantial root of this equation defines a curve that,
together with axis OX, forms an angle, tangent of

“4)

which equals k) kzz, and form R(x, y), while
X

F(x, y)=0 preserves constant sense for any k.
This event is characterized by a knot. Besides, if
R(x, y) > 0, this knot is unstable, and if R(x, y) <0
it is stable. If equation F(x, y) =0 has substantial
roots, and form R(x, y) on one of the beams equals
more than zero, and on other beams is less, then
such event is characterized as a «saddle».

Let us imply now that F(x, y) is defined in sense.

Let us write down (4) in polar coordinates:

RV (@)= X" (cos®, sin@)cosO+Y " (cos6, sinB)sin6;

F™D (@)= —X'" (cos8, sinB)sinO+ Y™ (cos 6, sin B) cos .

The solution of the system (5) looks as:

0 R(m+1) (e)
r=rexp|—/——————
AVIERT

de. (7)

Thus, in formula (7) under-integral expression
is a periodical function of 6, then (7) it can be de-
scribed as:

;= % =r"R"V(0);
de )
e — E — rm—l E)(m+1)(e)’
where
(6)

r=r,exp (ﬁ+ 2& sinne—b—” cosne), (8)
2 an n
wherea, b ,a ,b, arecoefficients of degradation of
functions R"*'(8)/ F"*'(8) into the line of Fourier.

It is clear that (8) is an equation of spirals. If
a,> 0, they are unstable. If a = 0, phase trajecto-
ries form locked curves, and the beginning of coor-
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dinates is the center. Periodic solution of the system
(3) corresponds to the letter event.

Thus, conditions of existence of periodic solu-
tions for system (3) comes to the fulfillment of two
requirements:

a) Function F(x, y) must be defined in sense;

21 p(m+l)

bya - LTR®)

0 T 0 F;(erl) (e )
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Let’s consider differential operator Sturm-Li-
ouville of the second order:

=" (x)+q(x) y(x)=1r-a* y(x), |
0<x<m, a>0, @

with not separable boundary conditions of the first
type (see [1]):
¥ (0)+a,-y(0)+a, y(n)=0,
, )
y (TE)+ ) 'J’(O)+ ay .y(n): 0,

where a,, € C (k,m =1; 2), and it is supposed
that potential ¢(x) — summable function on the seg-
ment [0; 7t]:

q(x)eLl[O;N](=)(Iq(z)dt) =q(x) 4

almost everywhere on [0; t].

Theorem. Asymptotics of the eigenvalues of
the differential operator (1)—(2) with a condition (3)
has the following kind:

_k dy du oL
Sk_a+ak+ak2 +Q(k3)’ 4)
. k=1,273,...
and for this
l:_[q(t)dt+fq(t)cos (2kt)dt - 2(a11 —ay ta, _aZl)]5 (5)
0 0

N|Q. l\)|_‘

L gqo)-(gq(c)-[sin@kc)—sm(zkr)—sin(zk@—r))]-dC)dt,---

The theorem is proved by methods of the chap-
ter 5 of the monograph [2].

References

1. Sadovnichiy V.A., Sultanayev Ya.T., Akhtyamov A.M.
Inverse problems of Sturm-Liouville with not separable bound-
ary conditions. — M.: Publishing House of Moscow University,
2009. — 184 p.

2. Mitrokhin S.I. Spectral theory of operators: smooth, dis-
continuous, summable coefficients. — M.: INTUIT, 2009. — 364 p.

The work is submitted to the Scientific Inter-
national Conference «Research on the priority
of higher education on-directions of science and
technology», on board the cruise ship MSC Mu-
sica, June, 10-17, 2012, came to the editorial office
on 03.05.2012.

T 20— 1)q () sin (2k )dr + %2

n jq (¢)sin (2kt )dt -
(©)

THE MATERIAL WORLDS HIERARCHY
EMPIRICAL MODELS

Vertinsky P.A.
Usolje-Sibirskoe, e-mail: pavel-35@mail.ru

As, now, it was known, on the basis of all those
natural science models, having described in the au-
thor’s papers [1, 2] etc, having taking into account
the physicists’ empirical conclusions, the findings,
and the experimental results after Albert Einstein,
the STEREOCHRONODYNAMICS objective rea-
sons had been noted — the physical theory, that could
be created the time — space mathematical model,
which should to be had the quite necessary and the
sufficient flexibility in the time — space all the prop-
erties description, including the modern physical
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