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SEMIFIELDS AND SHEAVES
Vechtomov E.M.

Vyatka State University of Humanities
Kirov, Russia

The basis of the theory of sheaf representations of semifields is stated in this work. The analogs of Pierce’s
and Lambek’s sheaves from the theory of rings are defined for semirings. Functional characterizations of
biregular semifields are obtained.

Introduction
The theory of semifields is a perspec-

tive area of a modern algebra, which we can
examine either as a component of the theory
of semirings or as groups with a complemen-
tary binary operation. Golan’s monograph
covers  the  theory  of  semirings  [9].  Some
questions  of  the  theory  of  semifields  were
examined in articles [4], [5], [8].

The theory of semirings and the theory
of semifields have been investigated by the
participants of the scientific algebraic semi-
nar in Vyatka State University of Humanities
since 1994.

The basis of the theory of sheaf repre-
sentations of semifields, which was initiated
in [11]–[15], is stated briefly in this work. In
this connection the class of biregular semi-
fields is examined more completely.

Semifield is an algebraic structure,
which is a multiplicative group and, at the
same time, an additive commutative semi-
group, and multiplication is distributive con-
cerning addition from both sides. Semifields
with added zero are the semirings with divi-
sion,  which  are  not  rings.  As  rings  and  dis-
tributive lattices semifields with zero form an
important class of semirings, which plays an
essential role in a structural theory of semir-
ings. Idempotent semifields (semifields with
identity u+u=u) correspond lattice ordered
groups. Semifields are related to rings, be-
cause every semifield has a ring of differ-
ences. Let’s notice, that cancellable semi-
fields (semifields with quasi-identity
u+w=v+w u=v) are embedded in their rings
of differences.

When investigating semifields we can
use functional method: studied semifield is

realized as a semifield of sheaf’s cross-
sections  of  some  semifields  under  the  topo-
logical space. Many rings admit good func-
tional (sheaf) representations [6], which in
many things are transferred on semirings [7].

Let’s introduce needed conceptions.
The class of the unit of arbitrary congruence
on semifield is called the kernel of semifield.
The subset A of semifield U will be the ker-
nel if and only if A is a normal subgroup of a
multiplicative group U, satisfying condition:
if u, v U, u+v=1, a, b A, then ax+by A.
The lattice of all kernels (congruences) of
semifield U is indicated ConU. The kernel of
semifield U, generated by element u, is called
the main kernel and indicated (u). The kernel
A ConU is called complemented, if there is
the kernel B ConU, when AB=U
A B={1}.

The kernel A of semifield U is called
finitely generated, if A=(u1) … (un)  for  the
finite number of elements u1, …, un U. The
semifield U=(u) is called the semifield with
generator u.  The  kernel  (2)  of  semifield U,
where 2=1+1, is the smallest subsemifield in
U, which is a kernel. If U=(2), semifield U is
called bounded. Semifield is called reduced,
if the quasi-identity u2+v2=uv+vu u=v is
executed in it. Semifield U is called distribu-
tive (chain, simple, indecomposable), if lat-
tice ConU is distributive (the lattice is a
chain, two-element, has two complemented
elements exactly).

The kernel P of semifield U is called
nonreducible, if A B P lead to A P or
B P for  every A, B ConU. Space Sp(U) of
all nonreducible kernels of semifield , exam-
ined with stone topology, is called the nonre-
ducible spectrum of semifield U. Its subspace
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MaxU,  which  consists  of  all  maximal  ker-
nels, is called the maximal spectrum of semi-
field U. The pseudocomplement of kernel
A ConU is the biggest kernel A*, which
gives {1} in meet with A. Let’s assume
OP={u U: v U\P (u) (v)={1}} for arbi-
trary nonreducible kernel P of semifield U

About the properties of semifields
Let’s formulate some general proper-

ties of semifields [12].
Property 1. Every finitely generated

semifield is semifield with generator.
Property 2. Every semifield is embed-

ded in semifield with generator.
Property 3. Maximal kernels of any

semifield are nonreducible.
Property 4. If U is semifield with gen-

erator, then spaces Sp(U) and MaxU are
compact and every semifield U‘s own kernel
is included in some its maximal kernel.

Property 5. The opposite thing is right
for distributive semifields U: if space Sp(U)
is compact, or space MaxU is compact and
semifield U‘s own kernels are included in
maximal kernels, then U is semifield with
generator.

Property 6. The set of all comple-
mented kernels of every semifield U gener-
ates Boolean sublattice of lattice ConU.

Property 7. If semifield U is either dis-
tributive or reduced and bounded, then ConU
is lattice with pseudocomplements, and sets
OP, P Sp(U), are kernels in U.

The analog of Pierce’s representa-
tion

Let’s define the analog of Pierce’s ring
sheaf representation [1], [6, § 12] for any
semifield U.  Let’s  examine  Boolean  sublat-
tice B(U) in ConU of all semifield U‘s com-
plemented kernels and space M(U) of all
maximal ideals of Boolean lattice B(U) with
stone topology. Disjunctive union  of  all
factor semifields U/ M, where M M(U),
generates the structural sheaf of semifield U
under zero-dimensional compact M(U). Let’s
indicate the semifield of all stalks of sheaf
as (M(U), ).

Theorem 1. Every semifield U is iso-
morphic to semifield (M(U), ) of sections

of sheaf  of factor semifields of semifield U
under zero-dimensional compact M(U).

Consequence 1. Every semifield with
final set of kernels is isomorphic to direct
product of finite number of indecomposable
semifields.

Semifield U is called strongly Gelfand,
if there is its complemented kernel , that

M and N for every two different
maximal kernels M and N in U. The  semi-
field, all kernels (main kernels) of which are
complemented, is called Boolean (biregular).
Biregular  semifields  are  the  analogs  of  bi-
regular  rings.  It’s  clear,  that  biregular  semi-
fields are distributive.

If U is strongly Gelfand semifield, let’s
identify every maximal kernel M MaxU
with maximal ideal {A B(U): A M} of
Boolean lattice B(U). Then zero-dimensional
compact M(U) will be the compactification
of locally compact space MaxU.

Proposition 1. For strongly Gelfand
semifield U space MaxU is embedded in
M(U) homeomorphically.

Theorem 2. Any semifield U is biregu-
lar if and only if it is isomorphic to the semi-
field of all sections of some sheaf of simple
and trivial semifields (U/ M) under zero-
dimensional compact M(U).

Consequence 2. Every biregular semi-
field is factorized in direct product of biregu-
lar idempotent semifield and biregular
bounded commutative semifield, which are
specified explicitly accurate within isomor-
phism.

Consequence 3. In every biregular
semifield every kernel is the meet of maximal
kernels, and finitely generated kernels are
main.

In every biregular semifield U nonre-
ducible kernels are maximal: SpecU=MaxU.
Semifields with generator correspond to rings
with unity, their maximal spectrum is com-
pact.

Theorem 3. Following states are
equivalent for every biregular semifield U:

1) MaxU is compact;
2) MaxU is homeomorphous to M(U);
3) U is the semifield with generator.



CONTENTSPedagogical sciences

EUROPEAN JOURNAL OF NATURAL HISTORY

62

Consequence 4. Biregular semifield
with generator is isomorphic to the semifield
of all sections of Hausdorff sheaf of simple
semifields under zero-dimensional compact,
which is specified explicitly accurate within
homeomorphism.

Let’s examine pseudocomplement
A*={u U: (u) A={1}} for kernel A of semi-
field U. In the case of distributive semifields
U pseudocomplement A* is the biggest kernel
in U, the meet of which with this kernel is
unit kernel {1}. Distributive semifield is
called Baer, if the pseudocomplement of
every its kernel is complemented.

Proposition 2. Following states are
right for kernel A of semifield  of all possi-
ble sections of the sheaf of simple semifields
under zero-dimensional compact X, which
has one generator:

1) A is complemented in  if and only if
set A={x X: s A s(x)=1} is closed-open
in X;

2) A=B* for some kernel B in  if and
only if A is canonically closed in X, or it co-
incides with the closure of its interior.

Topological space is called extremally
unconnected, if the closure of any its open set
is open again.

Theorem 4. For biregular semifield
with generator to be Baer, it’s necessary and
sufficient, that its maximal spectrum is ex-
tremally unconnected space.

Theorem 5. Semifield U is Boolean if
and only if it is isomorphic to the semifield of
all sections of the sheaf of simple and trivial
semifields (U/ M) under zero-dimensional
compact M(U), the set of isolated points of
which (MaxU) is dense everywhere.

Consequence 5. If semifield U is Boo-
lean, space M(U) is the compactification of
Stone-Cheh of a discrete space MaxU:
M(U) MaxU.

Consequence 6. Boolean semifields
with generator are direct products of the fi-
nite family of simple semifields accurate
within isomorphism.

Consequence 7. Every Boolean semi-
field is isomorphic to direct product of Boo-
lean idempotent semifield and finite direct

product of reducible simple commutative
semifield.

The semifields of sections of compact
sheaves

Let sheaf of semifields Ux under
topological space X is given.

Let’s assume for point x X:
={s : s(x)=1=1x Ux} is the kernel

of the semifield of sections = ( , );
x: Ux, x(s)=s(x)  s , is

the homomorphism of semifields.
Sheaf  is called a compact sheaf, if
1) X is compact;
2)  is a factor sheaf, i.e. x is a surjec-

tive representation for every point x X;
3) y=  for every point x y from .
Every compact sheaf has the follow-

ing important property:
there is the cross-section s  with

values 1 on Y  s( ) x for every closed set Y
in , point x X\Y and an nonreducible ker-
nel x of semifield Ux.

Proposition 3. Every sheaf of semi-
fields under zero-dimensional compact is
compact.

Proposition 4. Kernels A and B of the
semifield (X, ) of sections of any semi-
fields’ sheaf  under zero-dimensional com-
pact X are equal if and only if x(A)= x(B)
for all points x X.

Consequence 8. The lattice of kernels
of the direct product of finite number of semi-
fields is isomorphic to the direct product of
lattices of actors’ kernels.

Theorem 6. The maximal kernels of
the semifield (X, ) of sections of semifields
Ux’s compact sheaf are exactly kernels x

-

1(Kx), where x X and Kx is a maximal kernel
in Ux. If X is a zero-dimensional compact, it’s
also right for nonreducible kernels.

Theorem 7. The  semifield  (X,  )  of
sections of any sheaf  of semifields Ux un-
der zero-dimensional compact X is distribu-
tive (bounded) if and only if all its stalks Ux
are distributive (bounded).

The semifield is called Gelfand, if
there are elements a M\N and b N\M,
where (a) (b)={1}, for every its unequal
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maximal kernels M and N. Maximal spectra
of Gelfand semifields are Hausdorff, and
every its nonreducible may be included into
only one maximal kernel.

The semifield, which has the biggest
own kernel, is called a local semifield. Bi-
regular semifields and local semifields are
strongly Gelfand, and strongly Gelfand semi-
fields are Gelfand.

Theorem 8. The following states are
right for the semifield (X, ) of cross-
section of any compact sheaf of local semi-
fields:

1)  is Gelfand;
2) if  is semifield with generator, be-

ing strongly Gelfand  is equivalent to the
zero-dimensionality of compact , and Max
is homeomorphous to .

Theorem 6 and the state 2) of theorem
8 are  sheaf  variations  of  the  classic  theorem
of Gelfand-Kolmgoroff about the rings of
continuous functions.

The analog of Lambek’s
representation

The representation of Lambek [2],
[5, § 11] is used in the theory of rings too.
Let’s spread this construction on semifields.

Let’s assume that semifield U is dis-
tributive or reduced bounded semifield. Then
sets OP, P SpecU, will be kernels. Let’s ex-
amine the family (OP) of kernels of semifield
U, which is indexed by points P of topologi-
cal space Sp(U). It is an open family of ker-
nels, i.e. the set {P Sp(U): u OP} is open in
an nonreducible spectrum Sp(U), when every
u U.

In reality,

{P Sp(U): u OP}={P Sp(U): (u)* P}=D((u)).

That’s why [3] there is the sheaf
(U) of factor semifields U/OP of semi-

field U under compact T0-space Sp(U). It’s
the structural sheaf of semifield U, which is
analogous to the sheaf of Lambek for rings
[5].

Theorem 9. Distributive semifield U
with generator is strongly Gelfand if and
only if it’s isomorphic to the semifield

(X, )  of  sections of  sheaf  of  local semi-
fields Ux under zero-dimensional compact X.

There we can take a maximal spectrum
MaxU as X, and factor semifields U/OM as
stalks UM.

Theorem 10. The semifield is biregu-
lar if and only if it’s isomorphic to the semi-
field of all sections with the compact carriers
of Hausdorff sheaf of simple semifields under
a zero-dimensional locally compact space.

Consequence 9. For semifield to be
biregular semifield with generator, it’s nec-
essary and sufficient, that it is isomorphic to
the semifield of all sections of Hausdorff
sheaf of simple semifields under zero-
dimensional compact.

The representation of reduced
bounded semifields

Every reducible semifield U embeds in
its ring of differences R=R(U). Every
bounded semifield U is reducible and the lat-
tice ConU of its kernels is canonically iso-
morphic to the lattice IdR of all ideals of the
ring of differences R [10]. Following repre-
sentations : IdR ConU and : ConU IdR
determine the isomorphism of lattices IdR
and ConU:

(I)=(I+1) U for all I IdR,
(A)=(A–1)U for all A ConU.

Meanwhile (I J)= (I) (J)  
(I+J)= (I) (J) for every I, J IdR.

To be reduced for reducible semifield
U is  equivalent  to  be  reduced  for  its  ring  of
differences R,  i.e.  to  be  absent  in R nonzero
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nilpotent elements. Reduced rings have the
feature of symmetric property: if the multi-
plication of several elements of ring, taken is
some  order,  is  0,  the  multiplication  of  these
elements, taken in any other order, is 0 too.

Proposition 5. The following states
are equivalent for every nonreducible ideal
Q of reduced ring T with unit:

1) Q is a minimal nonreducible ideal;
2) Q is a minimal prime ideal,
3) Q=OQ.

Then  U  is  an  arbitrary reduced
bounded semifield and R is its ring of differ-
ences. Isomorphisms  and  retain irreduci-
bility and keep kernels and ideals – the ele-
ments of lattices ConU  IdR, respectively –
finitely generated. Let’s notice, that finitely
generated kernels (ideals) of semifield U
(ring R)  are  exactly  compact  elements  of  al-
gebraic lattice ConU (IdR) []. The following
states are right for every A, B ConU, I,
J IdR, u, v U:

A B={1} (A) (B)={0}=0 (A) (B)=0; (1)
I*=AnnI={r R: rI={0}} and (A*)=Ann (A); (2)

Ann(I+J)=AnnI AnnJ and (AB)*=A* B*; (3)
((u))=R(u–1)R is the main ideal of ring R; (4)

(u) (v)={1}  (u–1)(v–1)=0 uv+1=u+v; (5)
(OP)=O (P). (6)

Proposition 6. If every finitely generated kernel of semifield U is the main kernel, all
finitely generated ideals of its ring of differences are main.

Proposition 7. ConU is lattice with pseudocomplements, for every nonreducible kernel
P of semifield U set OP is kernel in U. Furthermore,

{OP: P Sp(U)}={1}. (7)

Proposition 8. The minimum of nonre-
ducible kernel P of semifield U is equivalent
to equality P=OP.

Let’s assume, that = (Sp(U), ) is
the  semifield  of  all  sections  of  sheaf with
point-wise determined operations of addition

and multiplication. We would remind you
that  the  section  of  sheaf  is every continu-
ous representation s: Sp(U) , where
s(P) U/OP for every P Sp(U). Let’s set the
representation : U by the formula

(u)(P)=uOP U/OP for all P Sp(U).

It’s clear, that  will be the homo-
morphism of semifields, and because of (7) –
the homomorphic embedding of semifield U
in  the  semifield  of  sections . The homo-
morphism  is required functional represen-
tation of this semifield U by the sections of
sheaf .

There is isomorphic Lambek’s sheaf
representation ^ of reduced ring of differ-
ences R under prime spectrum SpecR. The
functional representation : R (Sp(R), )
is built as for semifield U. Factor rings R/OQ
of ring R for arbitrary nonreducible ideal Q

in R are the layers of sheaf . There is
(r)=r^ on SpecR Sp(R) for r R.

Proposition 9. Representation is
isomorphism.

Proposition 10. Factor ring R/O (P) is
the ring of differences of factor semifield
U/OP for every nonreducible kernel P of
semifield U, semifield is reduced, bounded
and OP/OP={1}.

Proposition 11. Every reduced
bounded semifield U is isomorphic to
“dense” sub-semifield of semifield

(SpecU, ) of sections of the sheaf  of fac-
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tor semifields U/OP under nonreducible spec-
trum SpecU.

Theorem 11. Commutative semifield is
isomorphic to the semifield of all sections of
the sheaf of chain bounded commutative
semifields under zero-dimensional compact if
and only if it is strongly Gelfand distributive,
reduced and bounded.
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