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     In this paper we consider a new method of 
quick construction of polyanalytic functions with 
a predetermined cluster set in isolated singular B-
points (radiant points) of these functions. 
     It is known [1–5, 7] that if a set  

C⊂M of any of the four types is given: an 
extended complex plane C , a polynomial image 

)(ωP  of a unit circle { }1|:| =∈= zz Cω  
( CC \][)( zzP ∈ ), an arbitrary unit subset of 

the set C , and  
finally, a union of finite number of 

nondegenerate polynomial lines U
m

j
jL

1=

 

augmented with ∞ point, then for any point 
C∈a  there is such a deleted neighborhood 

)(aO
o

of its and a defined in it poly-analytic 
(p.a.) function )(zF , i.e. the function of the 
kind 
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where Nn∈ , )(zfk  ( 1,...,0 −= nk ) – are 

analytic in )(aO
o

 functions, that 

MazFC =)),(( . Let us remind that the 
number Nn∈  is called [1] the order of poly-
analytic property of the function )(zF , and if 
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01 ≡/−nf , then it is called the proximate order 

of its poly-analyticity; the functions  )(zfk  
( 1,...,0 −= nk ) are called the analytic 
components of the poly-analytic (or as it is 
spoken about, n - analytic) function )(zF . 

     However, the earlier offered in [2,3] method 
of finding the corresponding p.a. function for the 
last, the fourth, case, when the point a is called 
[2, 3] the isolated singular l-point of the function 

)(zF , and the predetermined set C⊂M is 
sure to have the form 
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where )(RPL jj = , CC \][)( zzPj ∈ , 

∞=∞)(jP ; mj ,...,1= , unlike the rest of 
the cases, was very complicated and tedious. 
     In this article essentially more simple modes 
of construction of a p.a. function possessing a 
limit set of the kind (2) in its isolated l-point are 
offered, CC \][)( zzPj ∈  ( mj ,...,1= ) 
being arbitrary predetermined polynomials 
different from those identical to the constants.      
     As compelling for any C∈a  congruence 

)0),(()),(( azFCazFC +=  allows 
considering that 0=a  or ∞=a , and vice 
versa, then, for the sake of simplicity, some 
results further will be formulated namely for 

∞=a . 

     Theorem 1 

      Let    )(
1

U
n

j
j RPL

=

= ,  where Nn∈ ,  

)(
0

1)(
1

)( ...)( jmj
m

mj
mj czczczP +++= −

− , 

Nm∈ , 0)( ≠j
mc , nj ,...,2,1=  and let 

)()(
jk

j
k pc ε= , where the polynomials 

CC \][)( zzpk ∈ , mk ,...,1,0= , and the 

numbers nεεε ,...,, 21  are all complex n -th 

roots of 1 (unity), the polynomial )(zpm  has no 
complex unit module roots, then for the function 
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 the congruence LzFC =∞)),((  is correct. 
     The deduction of the theorem 1 is in [6]. 
     Samples 
1. As RizzC =∞− ),( , then 
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( ) ( )11 −+= RiRi U  is a union of a pair of 
parallels; 
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union of three parallels  
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union of tree concurrent in the 0 point lines. 

2. As ( )( ) +=∞−− RzzC ,2 , то 
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a union of three half-lines, all of them 
centering in 0 point and  making angles of 
1200. 

3. As ( )( ) { }RttitizzС ∈+=∞+++ |2,1 22  is a 
parabola of the second order, then every of the 

sets, ( )( ) 





 ∞+++ ,1

222 izz
z
zС  and 

( ) 





 ∞++++ ,1

222

z
zizzС , is a union 

of two parabolas. 
In the conclusion of the article let us show some 
simple upper estimate of the number of 
polynomial lines, making up )),(( azFC , 

where C∈a   is isolated singular l-point of the 
p.a. function )(zF . 
     Theorem 2 
     For any p.a. function )(zF of the proximate 
poly-analyticity order 2, ≥∈ nNn , and for 

its every isolated singular l-point  C∈a  the set 
of all the elements from CI)),(( azFC  can 
be represented in the form of a union of finite 
number of nontrivial polynomial lines, the 
quantity of which Nl ∈ satisfies the following 
conditions: 

а). )1(4 −≤ nl ; 
б). )!1( −≤ nl  (with 2=n  and with 

3=n this estimate is exact). 
     The deduction of the theorem 2 is in [6]. 
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1. For every poly-analytic function (p.a. 

function) [1-4] 

 


